学习啦——考试网>学历类考试>高考频道>高考科目>高考数学>

高考数学六大题型

德豪分享

  把握数学高考中必考的六大题型,就一定能为自己在高考中获得更多分数。下面是学习啦小编为你整理关于高考数学六大题型的内容,希望大家喜欢!

  高考数学六大题型

  一、三角函数题

  三角题一般在解答题的前两道题的位置上,主要考查三角恒等变换、三角函数的图像与性质、解三角形等有关内容.三角函数、平面向量和三角形中的正、余弦定理相互交汇,是高考中考查的热点.

  纵观近几年的高考试题,许多新颖别致的三角解答题就是以此为出发点设计的,在这类问题中平面向量往往只是起到“包装”的作用,实际主要考查考生利用三角函数的性质、三角恒等变换与正、余弦定理解决问题的能力.解决这类问题的基本思路是“脱掉向量的外衣,抓住问题的实质,灵活地实现问题的转化,选择合理的解决方法”,在解题过程中要注意三角恒等变换公式的多样性和灵活性,注意题目中隐含的各种限制条件,做到推理严谨、计算准确、表达确切.

  注意的问题

  注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!).

  二、数列题

  数列题重点考查等差数列、等比数列、递推数列的综合应用,常与不等式、函数、导数等知识综合交汇,既考查分类、转化、化归、归纳、递推等数学思想方法,又考查综合运用知识进行运算、推理论证及解决问题的能力.近几年这类试题的位置有所前移,难度明显降低.

  注意的问题

  1.证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列.

  2.最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证.

  3.证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识).

  三、立体几何题

  常以柱体、锥体、组合体为载体全方位地考查立体几何中的重要内容,如线线、线面与面面的位置关系,线面角、二面角问题,距离问题等,既有计算又有证明,一题多问,递进排列,此类试题既可用传统方法解答,又可用空间向量法处理,有的题是两法兼用,可谓珠联璧合,相得益彰.究竟选用哪种方法,要由自己的长处和图形特点来确定.便于建立空间直角坐标系的,往往选用向量法,反之,选用传统方法.另外,“动态”探索性问题是近几年高考立体几何命题的新亮点,三视图的巧妙参与也是立体几何命题的新手法,要注意把握.

  注意的问题

  1.证明线面位置关系,一般不需要去建系,更简单.

  2.求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系.

  3.注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题).

  四、概率问题

  概率题一般在解答题的前三道题的位置上,主要考查数据处理能力、应用意识、必然与或然思想,因此近几年概率题常以概率与统计的交汇形式呈现,并用实际生活中的背景来“包装”.概率重点考查离散型随机变量的分布列与期望、互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验与二项分布等;统计重点考查抽样方法(特别是分层抽样)、样本的频率分布、样本的特征数、茎叶图、线性回归、列联表等,穿插考查合情推理能力和优化决策能力.同时,关注几何概型与定积分的交汇考查,此类试题在近几年的高考中难度有所提升,考生应有心理准备.

  注意的问题

  1.搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数.

  2.搞清是什么概率模型,套用哪个公式.

  3.记准均值、方差、标准差公式.

  4.求概率时,正难则反(根据p1+p2+...+pn=1).

  5.注意计数时利用列举、树图等基本方法.

  6.注意放回抽样,不放回抽样.

  7.注意“零散的”的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透.

  8.注意条件概率公式.

  9.注意平均分组、不完全平均分组问题.

  五、圆锥曲线问题

  解析几何题一般在解答题的后三道题的位置上,有时是“把关题”或“压轴题”,说明了解析几何题依然是重头戏,在新课标高考中依然占有较突出的地位.考查重点:第一,解析几何自身模块的小交汇,是指以圆、圆锥曲线为载体呈现的,将两种或两种以上的知识结合起来综合考查.如不同曲线(含直线)之间的结合,直线是各类曲线和相关试题最常用的“调味品”,显示了直线与方程的各知识点的基础性和应用性.第二,圆锥曲线与不同模块知识的大交汇,以解析几何与函数、向量、代数知识的结合最为常见.有关解析几何的最值、定值、定点问题应给予重视.一般来说,解析几何题计算量大且有一定的技巧性(要求品出“几何味”来),需要“精打细算”,对考生的意志品质和数学机智都是一种考验和检测.

  注意的问题

  1.注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法.

  2.注意直线的设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往用点差法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等;

  3.战术上整体思路要保7分,争9分,想12分。

  六、导数、极值、最值、不等式恒成立(或逆用求参)问题

  导数题考查的重点是用导数研究函数性质或解决与函数有关的问题.往往将函数、不等式、方程、导数等有机地综合,构成一道超大型综合题,体现了在“知识网络交汇点处设计试题”的高考命题指导思想.鉴于该类试题的难度大,有些题还有高等数学的背景和竞赛题的味道,标准答案提供的解法往往如同“神来之笔”,确实想不到,加之“搏杀”到此时的考生的精力和考试时间基本耗尽,建议考生一定要当机立断,视时间和自身实力,先看第(1)问可否拿下,再确定放弃、分段得分或强攻.近几年该类试题与解析几何题轮流“坐庄”,经常充当“把关题”或“压轴题”的重要角色.

  注意的问题

  1.先求函数的定义域,正确求出导数,特别是复合函数的导数,单调区间一般不能并,用“和”或“,”隔开(知函数求单调区间,不带等号;知单调性,求参数范围,带等号).

  2.注意最后一问有应用前面结论的意识.

  3.注意分论讨论的思想.

  4.不等式问题有构造函数的意识.

  5.恒成立问题(分离常数法、利用函数图像与根的分布法、求函数最值法).

  6.整体思路上保6分,争10分,想14分.

  总之,解答题的过程要做到“步步有理有据”.书写解题过程时,要分清主次,要理清哪些步骤是必须写的(即得分点),哪些步骤是可以在演草纸上演算的,只有“精”写过程,才能节约时间,答题过程也才能简捷、清晰.当然“精”写过程是建立在步骤完整的基础之上的,任何的“跳步”书写都容易产生歧义,都是要失分的.当然,要保证解答题得高分,除了步骤要写清晰以外,结果还要准确.“会而不对”的现象是很常见的,这也是制约“得分”的“致命点”。

  六大题型夺分技巧

  对于三角解答题,各位考生一定要掌握和差角公式、二倍角公式、辅助角公式、降次公式、余弦定理、正弦定理的应用,这几年高考一直保持了较高的考查频率,且多数控制在中等难度,所以要拿到高分。

  概率统计题,它主要考查的是涉及排列组合与概率的重点内容,比如等可能事件、互斥事件、独立事件等。把近两年的相关题目多做做、多想想。对于立体几何题,只要发现可以建立空间直角坐标系,极力主张赶紧建系,再细心算好法向量,这样基本可以保证拿满分了。

  解析几何题,要特别注意运算能力问题,因为解析几何当中经常遇到含有字母的式子运算。因而一定要切实加强训练。同时注意对韦达定理、中点公式、弦长公式的应用。注意解析几何与平面向量的知识交汇。

  对于数列题,近年来数学高考命题的热点正是在数列与函数、不等式的结合题目,递推数列也是一个热点内容。

  对于导数这部分内容,要求熟记几个基本的求导公式,掌握两个函数和差积商的求导法则,利用导数处理极值、最值、单调性问题以及切线问题,还要关注函数和导数、方程、不等式的交汇。当然,后三类问题基本上是把关题、压轴题,难就难在众多知识点交织在一起。解决问题的策略是把一个问题分解成若干个小问题,然后各个击破。

  2017届考生备考方向

  我们在学习的过程中,不要把过多的时间和精力用于钻研那些偏题和怪题。一卷的160分中,120分-130分都是基础。能把这些分数全部拿下,保证不失误,高考中一定能得高分。因此,在接下来一年或者两年的学习过程中,对于基础题型和常规解题思路,一定要重视、重视、再重视,熟练、熟练、再熟练。这样才能保证在高考中万无一失,冲刺高分。

  对于有更高目标,数学思维更加突出的学生来说,平日里可以多训练一卷的最后两题与二卷的最后一题:函数与数列,排列组合,数学归纳法等。



猜你感兴趣:

1.高考数学六大题型答题技巧

2.数学高考大题题型归纳

3.数学高考重点题型归纳

4.2017高考数学各类题型答题方法

5.高考数学不同题型的答题套路