学习啦——考试网>学历类考试>高考频道>高考科目>高考数学>

高考数学圆的方程练习题附答案

思晴分享

  圆的标准方程(x-a)²+(y-b)²=r²中,有三个参数a、b、r,只要求出a、b、r,这时圆的方程就被确定。今天,学习啦小编为大家整理了高考数学圆的方程练习题附答案,欢迎阅读。

  高考数学圆的方程练习题

  1.若圆C的半径为1,圆心在第一象限,且与直线4x-3y=0和x轴都相切,则该圆的标准方程是________.

  [解析] 设圆心C(a,b)(a>0,b>0),由题意得b=1.

  又圆心C到直线4x-3y=0的距离d==1,

  解得a=2或a=-(舍).

  所以该圆的标准方程为(x-2)2+(y-1)2=1.

  [答案] (x-2)2+(y-1)2=1

  2.(2014·南京质检)已知点P(2,1)在圆C:x2+y2+ax-2y+b=0上,点P关于直线x+y-1=0的对称点也在圆C上,则圆C的圆心坐标为________.

  [解析] 因为点P关于直线x+y-1=0的对称点也在圆上,

  该直线过圆心,即圆心满足方程x+y-1=0,

  因此-+1-1=0,解得a=0,所以圆心坐标为(0,1).

  [答案] (0,1)

  3.已知圆心在直线y=-4x上,且圆与直线l:x+y-1=0相切于点P(3,-2),则该圆的方程是________.

  [解析] 过切点且与x+y-1=0垂直的直线为y+2=x-3,与y=-4x联立可求得圆心为(1,-4).

  半径r=2,所求圆的方程为(x-1)2+(y+4)2=8.

  [答案] (x-1)2+(y+4)2=8

  4.(2014·江苏常州模拟)已知实数x,y满足x2+y2-4x+6y+12=0,则|2x-y|的最小值为________.

  [解析] x2+y2-4x+6y+12=0配方得(x-2)2+(y+3)2=1,令x=2+cos α,

  y=-3+sin α,则|2x-y|=|4+2cos α+3-sin α|

  =|7-sin (α-φ)|≥7-(tan φ=2).

  [答案] 7-

  5.已知圆x2+y2+4x-8y+1=0关于直线2ax-by+8=0(a>0,b>0)对称,则+的最小值是________.

  [解析] 由圆的对称性可得,直线2ax-by+8=0必过圆心(-2,4),所以a+b=2.所以+=+=++5≥2+5=9,由=,则a2=4b2,又由a+b=2,故当且仅当a=,b=时取等号.

  [答案] 9

  6.(2014·南京市、盐城市高三模拟)在平面直角坐标系xOy中,若圆x2+(y-1)2=4上存在A,B两点关于点P(1,2)成中心对称,则直线AB的方程为________.

  [解析] 由题意得圆心与P点连线垂直于AB,所以kOP==1,kAB=-1,

  而直线AB过P点,所以直线AB的方程为y-2=-(x-1),即x+y-3=0.

  [答案] x+y-3=0

  7.(2014·泰州质检)若a,且方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则a=________.

  [解析] 要使方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则a2+(2a)2-4(2a2+a-1)>0,解得-20)关于直线x+y+2=0对称.

  (1)求圆C的方程;

  (2)设Q为圆C上的一个动点,求·的最小值.

  [解] (1)设圆心C(a,b),

  由题意得解得

  则圆C的方程为x2+y2=r2,

  将点P的坐标代入得r2=2,

  故圆C的方程为x2+y2=2.

  (2)设Q(x,y),则x2+y2=2,

  ·=(x-1,y-1)·(x+2,y+2)

  =x2+y2+x+y-4=x+y-2.

  令x=cos θ,y=sin θ,

  ·=x+y-2=(sin θ+cos θ)-2

  =2sin-2,

  所以·的最小值为-4.

  10.已知圆的圆心为坐标原点,且经过点(-1,).

  (1)求圆的方程;

  (2)若直线l1:x-y+b=0与此圆有且只有一个公共点,求b的值;

  (3)求直线l2:x-y+2=0被此圆截得的弦长.

  [解] (1)已知圆心为(0,0),半径r==2,所以圆的方程为x2+y2=4.

  (2)由已知得l1与圆相切,则圆心(0,0)到l1的距离等于半径2,即=2,解得b=±4.

  (3)l2与圆x2+y2=4相交,圆心(0,0)到l2的距离d==,所截弦长l=2=2=2.

  曲线与方程练习题

  1.(2014·徐州调研)若直线y=kx-2与抛物线y2=8x交于A,B两个不同的点,且AB的中点的横坐标为2,则k=________.

  [解析] 由消y得k2x2-4(k+2)x+4=0,由题意得Δ=[-4(k+2)]2-4k2×4=64(1+k)>0解得k>-1,且x1+x2==4解得k=-1或k=2,故k=2.

  [答案] 2

  2.点P是圆(x-4)2+(y-1)2=4上的动点,O是坐标原点,则线段OP的中点Q的轨迹方程是________.

  [解析] 设P(x0,y0),Q(x,y),则x=,y=,x0=2x,y0=2y,(x0,y0)是圆上的动点,

  (x0-4)2+(y0-1)2=4.(2x-4)2+(2y-1)2=4.即(x-2)2+2=1.

  [答案] (x-2)2+2=1

  3.(2014·宿迁质检)设抛物线的顶点在原点,其焦点F在x轴上,抛物线上的点P(2,k)与点F的距离为3,则抛物线方程为________.

  [解析] xP=2>0,设抛物线方程为y2=2px,则|PF|=2+=3,=1,p=2.

  [答案] y2=4x

  4.动点P到两坐标轴的距离之和等于2,则点P的轨迹所围成的图形面积是________.

  [解析] 设P(x,y),则|x|+|y|=2.它的图形是一个以2为边长的正方形,故S=(2)2=8.

  [答案] 8

  5.已知动圆过定点A(4,0),且在y轴上截得弦MN的长为8.则求动圆圆心的轨迹C的方程为________.

  [解析] 如图,设动圆圆心为O1(x,y),由题意,|O1A|=|O1M|,

  当O1不在y轴上时,过O1作O1HMN交MN于H,则H是MN的中点.

  |O1M|=,

  又|O1A|=,

  = ,

  化简得y2=8x(x≠0).

  当O1在y轴上时,O1与O重合,点O1的坐标(0,0)

  也满足方程y2=8x,

  动圆圆心的轨迹C的方程为y2=8x.

  [答案] y2=8x

  图8­8­3

  6.(2014·盐城调研)如图8­8­3所示,已知C为圆(x+)2+y2=4的圆心,点A(,0),P是圆上的动点,点Q在直线CP上,且·=0,=2.当点P在圆上运动时,则点Q的轨迹方程为________.

  [解析] 圆(x+)2+y2=4的圆心为C(-,0),半径r=2,·=0,=2,MQ⊥AP,点M是线段AP的中点,即MQ是AP的中垂线,连接AQ,则|AQ|=|QP|,

  ||QC|-|QA||=||QC|-|QP||=|CP|=r=2,

  又|AC|=2>2,根据双曲线的定义,点Q的轨迹是以C(-,0),A(,0)为焦点,实轴长为2的双曲线,由c=,a=1,得b2=1,因此点Q的轨迹方程为x2-y2=1.

  [答案] x2-y2=1

  7.已知抛物线C:x2=4y的焦点为F,经过点F的直线l交抛物线于A、B两点,过A、B两点分别作抛物线的切线,设两切线的交点为M.则点M的轨迹方程为________.

  [解析] 设M(x,y),A,B,显然x1≠x2,由x2=4y,得y=x2,y′=x,于是过A、B两点的切线方程分别为y-=(x-x1),即y=x- ,y-=(x-x2),即y=x- ,由解得 ,设直线l的方程为y=kx+1,由,得x2-4kx-4=0,x1+x2=4k,x1x2=-4 ,代入得,即M(2k,-1),故点M的轨迹方程是y=-1.

  [答案] y=-1

  8.(2014·江苏泰州中学期末)若椭圆C1:+=1(a1>b1>0)和C2:+=1(a2>b2>0)是焦点相同且a1>a2的两个椭圆,有以下几个命题:C1,C2一定没有公共点;>;a-a=b-b;a1-a2a2,所以b1>b2,C1,C2一定没有公共点;因为a1>a2,b1>b2,所以>不一定成立;由a-b=a-b得a-a=b-b;由a-a=b-b得(a1-a2)(a1+a2)=(b1-b2)(b1+b2),因为a1+a2>b1+b2,所以a1-a2b>0)所围成的封闭图形的面积为4,曲线C1上的点到原点O的最短距离为.以曲线C1与坐标轴的交点为顶点的椭圆记为C2.

  (1)求椭圆C2的标准方程;

  (2)设AB是过椭圆C2中心O的任意弦,l是线段AB的垂直平分线M是l上的点(与O不重合).

  若|MO|=2|OA|,当点A在椭圆C2上运动时,求点M的轨迹方程;

  若M是l与椭圆C2的交点,求AMB面积的最小值.

  [解] (1)由题意得又a>b>0,解得a2=8,b2=1,因此所求椭圆的标准方程为+y2=1.

  (2)设M(x,y),A(m,n),则由题设知||=2||,·=0,

  即解得

  因为点A(m,n)在椭圆C2上,所以+n2=1.

  即+x2=1,亦即+=1,

  所以点M的轨迹方程为+=1.

  设M(x,y),则A(λy,-λx)(λR,λ≠0),

  因为点A在椭圆C2上,所以λ2(y2+8x2)=8,

  即y2+8x2=,()

  又x2+8y2=8,()

  (ⅰ)+()得x2+y2=,

  所以SAMB=OM·OA=|λ|(x2+y2)=·≥.

  当且仅当λ=±1时,(SAMB)min=.


猜你感兴趣:

1.高考数学得分技巧

2.高考数学答题九大技巧

3.高考100天数学提分方法

4.2017高考数学选择题十大解法

5.关于高考数学时间分配的方法