高考函数大题解题技巧
新课标的颁布为高考试题命题思路拓展打开了新的局面,高考函数试题成为综合知识考察的重点问题。下面是学习啦小编为你整理关于高考函数大题解题技巧的内容,希望大家喜欢!
高考函数大题解题技巧
解三角形
解题指导:仔细审题,画出关键词(如锐角三角形等)
边角互化规则:
(1)先考虑统一为角 ;后考虑统一为边;
(2)尽量减少角的 个数
最值及范围问题:
(1)注意应用两边之和大于第三边;
(2)统一为角就用三角函数解题;统一为边就用不等式解题 。
面积公式的选择优先考虑用已知角。
立体几何
解题指导:仔细审题,画出关键词
建系规则:尽量使各个点都落在坐标轴上 。
求点的坐标技巧:
一是转化为平面图形;二是利用向量共线
已知条件的意图:
(1)已知边长有两个作用,一是方便建系设点的坐标;二是利用勾股定理证明垂直 。
(2)已知面面垂直的作用:证明线面垂直。
线面平行的证明:
法1 线线平行;法2 面面平行。
温馨提示:有些时候法向量就是坐标轴哦
概率与统计
解题指导:仔细审题,正确判断随机变量的取值。
(1)若题中有关键词或关键信息:相互独立,互不影响,已知概率等,则考独立事件或二项分布
(2)若题中有关键信息:已知概率且概率相等,直接求期望,实验次数多,实验具有重复性,则考独立重复试验(二项分布)
(3)与统计相结合的概率题目解题技巧:分层抽样与独立性检验结合,系统抽样与频率分布直方图相结合,有“频率视为概率”则考二项分布,有“在(从)...选取...”则考古典概型或超几何分布)
温馨提示:有些时候期望可以带公式哦(二项分布,超几何分布)
解析几何
解题指导:仔细审题,注意画图,注意焦点位置。
设点的坐标注意利用对称性,以减少变量个数
定值定点问题:
法1特值探路;法2利用对称性判断定点位置。
存在性问题:
法1特值探路;法2假设存在。
最值问题:
合理构建函数关系式,然后用换元法,求导法,配方法 等求最值。
温馨提示:
1、直线方程可以正设和反设,还可以设为两点式哦!
2、与圆综合多考虑图形的几何特征哦!
3、考抛物线可与导数切线相结合哦!
函数与导数
解题指导:仔细审题,注意画函数图像,注意定义域,参数范围 。
求导之后需要思考的问题:
1、判断正负,以确定原函数的单调性,
2、求根(猜根),
3、二次求导,研究导函数的单调性
4、当导数含有参数时要多分析参数对导数正负的影响
求参问题方法与技巧:
法1、分离参数:转化为恒成立问题,即大于最大,则大于所有;小于最小,则小于所有;
法2、构造函数:转化为恒成立问题,对参数进行分类讨论;
法3、利用不等式:整合函数解析式;lnx≤x-1 (x>0),ex≥x+1,sinx≤x (x≥0)
技1、可以提前分析(通过函数解析式的结构)参数的大致范围,以减少讨论情况
技2、提前限定(通过闭区间的端点函数值)参数的大致范围,以减少讨论情况
技3、重新整合函数解析式;如遇到x与lnx;x与sinx;x与cosx时要进行分离处理
技4、出现含参二次函数结构优先考虑因式分解
证明问题方法与技巧:
法1、分析法:利用划归转化思想
法2、构造函数:转化为求函数最值问题;
法3、f(x)min>g(x)max
法4、赋值法
法5、利用函数不等式:整合函数解析式;
lnx≤x-1 (x>0) ex≥x+1sinx≤x (x≥0)
法6、利用函数单调性
高考数学拿高分的六个方法
1.先易后难。要力求有效,防浪费时间、伤害情绪;
2.审题要稳,解答要快,审题时整个解题过程的“基础工程”,题目本事是怎样解题的信息源,必须充分弄懂题意,综合所有条件,提炼解题线索,形成整体认识,思路一旦出现,则尽量快速完成,防止“超时失分”。
3.要力求运算准确,争取一次成功。还要稳扎稳打,层层有据,步步准确,不能为追求速度而丢掉准确度,或是丢掉重要的得分步骤。
4.讲究规范书写,力争既对又全考试的有一个特点就是以卷面为依据,这就要求不但要会而且要对、对而且要全、全而且要规范。
5.小题小做巧做,注重思想方法.小题切勿大做,不在一道题上纠缠,选择题即使是“蒙”,也有25%的胜率。
6.遇到难题不弃,寻求策略得分.即使一点思路都没有,我们不妨罗列一些相关的重要步骤和公式,也许不觉中已找到了解题的思路。
高考数学考场取胜六大法宝
紧张不能慌张:稳定情绪,有条不紊
审题之后解题:审清题意,有的放矢
会做保证做对:认真对待,万无一失
快速必须准确:以准求胜,稳扎稳打
易题优先难题:先易后难,效益为上
答题莫忘检验:多管齐下,志在必得
猜你感兴趣:
4.高考数列解题技巧
上一篇:高考函数导数解题牛逼方法
下一篇:高考考前复习方法