数学0乘5教学反思
“0×5=?”一课是北师大版小学数学三年级上第四单元“乘法”中有关0的乘法教学。接下来是为大家带来的数学0乘5教学反思,望大家喜欢。
数学0乘5教学反思范文一
今天学习了0╳5=0后,我让学生尝试解决试一试“130╳5=?”,这是一道末尾有0的三位数与一位数相乘的计算题。书本提供了三种计算方法:
第一种:列竖式计算,末尾对齐。
130
╳ 5
650
第二种:先计算13╳5=65,然后通过比较13╳5和 130╳5的异同,发现130是13的10倍,所以130╳5应该等于65的10倍,所以130╳5=650。
第三种:列竖式计算,与第一种的方法不同,先将13和5相乘,再在乘得的数末尾添上一个0。
130
╳ 5
650
在交流反馈中,我发现学生在学习了两三位数乘一位数的笔算方法后,基本上都是选择第一种方法做,学生只要运用0乘任何数都等于0这个道理后基本上都能算对这道题。而没几个学生用第二、第三种方法,可是这两种方法对学生明白算理和简便运算是非常重要的。怎么办呢?是照搬教案,将就塞给 全部学生?还是另想它法?我决定放一放,用第二课时再想办法让学生掌握也不迟。
在第二课中,我提出这样的一个问题:你知道45╳10=?这个问题一出来,很多学生有些吃惊,看起来很难似的,之前学生都没有接触过两位数乘两位数的计算方法。这时候我鼓励学生,只要大家动脑筋,一定可以做出来的。有了刺激,学生积极去思考谈论,全班反馈交流时学生梁心怡想到利用第二种方法去做,得出了正确的答案。学生听了都恍然大悟,对数学的学习兴趣大增!
接着为了巩固这种算法,我出了2道算式题:130╳5=?和13╳50=?,这两个变式都是以13╳5=65为基础,然后扩大10倍得出最后答案。学生很快就算出来了,我引导全班学生总结这类题目的计算方法:末尾有0的乘法计算,可以先不看0,把前面的数先算出来然后在末尾添上0。其实这时也把后面整十整百整千乘个位数的计算包含在里面了,这样一来,即学习了新知识,又复习和巩固了旧知识。
通过这2节课的学习,学生对末尾有0的乘法计算基本上都掌握了,并体验到了学数学的快乐!我为他们的进步而开心!课堂是生成的,灵活的。作为新老师,只要多思考,多学习,不断将自己的想法付诸与行动,一点一滴地积累,一定会成长起来的,我相信!
数学0乘5教学反思范文二
“0×5=?”一课是北师大版小学数学三年级上第四单元“乘法”中有关0的乘法教学。这一课的主要教学目标是1、探索并掌握“0乘任何数都等于0”这个规律。2、根据这个规律,掌握乘数中间有0和乘数末尾有0的乘法算式。3、经历与他人交流各自算法的过程,体验算法多样化。
在教学时,我画了5个方框,每个盘子里有3个圆圈,问学生一共有几个圆圈?用乘法怎样列式?然后擦掉一个圆圈,剩两个圆圈,再问学生一共有几个圆圈?用乘法怎样列式?……直到方框中一个圆圈都没有。然后让学生计算 3×5=(),2×5=(),1×5=(),0×5=()这几个乘法算式,并让他们根据乘法的意义来找规律,说明0×5为什么等于0?让学生明白“0×5表示0个5相加,也可以表示5个0相加。0个5相加是0,5个0相加也得0,所以0×5=0”。讲到这里,有的学生说“5个方框都是空的,一个圆圈都没有,当然0×5=0”。当时我就觉得孩子们根据教材中的实际情境再结合乘法的意义去理解为什么0×5=0,比老师单纯地利用乘法的意义去讲解,学生应该更容易理解和接受。所以对他的说法我给予了极大的肯定和鼓励。
通过这个小小的教学情节,让我进一步明白了情境在我们平时的教学中起到的作用真的是很大的。它不仅可以吸引学生的注意力,提高学习兴趣,同时它更能帮助孩子理解所学知识。
在探讨乘数中间有0的乘法算式时,我逐步引导让学生自己比较乘数中间有0的乘法算式的积有什么不同,让学生能正确处理乘数中间的0。
探讨乘数末尾有0的乘法时,我让学生小组交流自己的算法,然后比较怎样算最简便。这样不仅让学生学会了与人合作,还亲自经历了计算的过程,最后我加以小结,让学生进一步理解最简便的算法。
练习中通过多种形式的练习,不仅让学生掌握了算法,还让学生能解决生活中的简单实际问题。美中不足的是,在最后的练习中,由于自己的疏忽,解答题的问题出现了问题。这让我非常自则,不过整体还是很成功的。
整节课环环相扣,学生学得快乐,教师教的开心,特别是开始的情境教学,更提高了学生的学习兴趣,为整节课的学习打下基础,所以我们在教学时,一定要注重情境的引入,要在情境中进行教学,要让学生尽可能地从身边的实际例子中去探索数学知识,理解数学知识,从而感受数学在我们的生活中是随处可见的,数学就在我们的周围。
数学0乘5教学反思范文三
《0×5=?》这一课是三年级数学上册第四单元“乘法”中有关0的乘法教学。这一课的主要教学目标是1、探索并掌握“0乘任何数都等于0”这个规律。2、根据这个规律,掌握乘数中间有0和乘数末尾有0的乘法算式。3、经历与他人交流各自算法的过程,体验算法多样化。
在教学时,我画了5个盘子,每个盘子里有3个苹果,问学生一共有几个苹果?用乘法怎样列式?然后擦掉一个苹果,剩两个苹果,再问学生一共有几个苹果?用乘法怎样列式?……直到盘子中一个苹果都没有。然后让学生计算 3×5=(),2×5=(),1×5=(),0×5=()这几个乘法算式,并让他们根据乘法的意义来找规律,说明0×5为什么等于0?让学生明白“0×5表示0个5相加,也可以表示5个0相加。0个5相加是0,5个0相加也得0,所以0×5=0”。讲到这里,有的学生说“5个盘子都是空的,一个苹果都没有,当然0×5=0”。当时,我就觉得孩子们根据教材中的实际情境再结合乘法的意义去理解为什么0×5=0,比老师单纯地利用乘法的意义去讲解,学生应该更容易理解和接受。所以对他们的说法我给予了极大的肯定和鼓励。
在探讨乘数中间有0的乘法算式时,我逐步引导让学生自己比较乘数中间有0的乘法算式的积有什么不同,让学生能正确处理乘数中间的0。探讨乘数末尾有0的乘法时,我让学生小组交流自己的算法,然后比较怎样算最简便。最后我加以小结,让学生进一步理解最简便的算法。练习中通过多种形式的练习,不仅让学生掌握了算法,还让学生能解决生活中的简单实际问题。美中不足的是,在最后的练习中,由于自己的疏忽,解答题的问题出现了问题。这让我非常自责,不过整体还是挺好的。