学习啦>学习方法>通用学习方法>学习方法指导>

高中数学对数函数知识点

丽仪分享

  高中数学知识点较多,大家是否已掌握了对数函数的知识点?下面是学习啦小编为大家整理的关于高中数学对数函数知识点的相关资料,希望对大家有帮助!

  对数的定义

  如果a的x次方等于N(a>0,且a不等于1),那么数x叫做以a为底N的对数,记作x=logaN。其中,a叫做对数的底数,N叫做真数。

  注:1、以10为底的对数叫做常用对数,并记为lg。

  2、称以无理数e(e=2.71828...)为底的对数称为自然对数,并记为ln。

  3、零没有对数。

  4、在实数范围内,负数无对数。在复数范围内,负数是有对数的。

  对数函数的定义

  一般地,函数y=logax(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。

  其中x是自变量,函数的定义域是(0,+∞)。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。

  对数函数的性质

  定义域求解:对数函数y=logax的定义域是{x丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1和2x-1>0,得到x>1/2且x≠1,即其定义域为{x丨x>1/2且x≠1}

  值域:实数集R,显然对数函数无界。

  定点:函数图像恒过定点(1,0)。

  单调性:a>1时,在定义域上为单调增函数;

  奇偶性:非奇非偶函数

  周期性:不是周期函数

  对称性:无

  最值:无

  零点:x=1

  注意:负数和0没有对数。

  两句经典话:底真同对数正,底真异对数负。解释如下:

  也就是说:若y=logab (其中a>0,a≠1,b>0)

  当a>1,b>1时,y=logab>0;

  当01时,y=logab<0;

  当a>1,0

  对数的基本性质及推导过程

  基本性质:

  1、a^(log(a)(b))=b

  2、log(a)(a^b)=b

  3、log(a)(MN)=log(a)(M)+log(a)(N);

  4、log(a)(M÷N)=log(a)(M)-log(a)(N);

  5、log(a)(M^n)=nlog(a)(M)

  6、log(a^n)M=1/nlog(a)(M)

  推导

  1、因为n=log(a)(b),代入则a^n=b,即a^(log(a)(b))=b。

  2、因为a^b=a^b

  令t=a^b

  所以a^b=t,b=log(a)(t)=log(a)(a^b)

  3、MN=M×N

  由基本性质1(换掉M和N)

  a^[log(a)(MN)] = a^[log(a)(M)]×a^[log(a)(N)] =(M)*(N)

  由指数的性质

  a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]}

  两种方法只是性质不同,采用方法依实际情况而定

  又因为指数函数是单调函数,所以

  log(a)(MN) = log(a)(M) + log(a)(N)

  4、与(3)类似处理

  MN=M÷N

  由基本性质1(换掉M和N)

  a^[log(a)(M÷N)] = a^[log(a)(M)]÷a^[log(a)(N)]

  由指数的性质

  a^[log(a)(M÷N)] = a^{[log(a)(M)] - [log(a)(N)]}

  又因为指数函数是单调函数,所以

  log(a)(M÷N) = log(a)(M) - log(a)(N)

  5、与(3)类似处理

  M^n=M^n

  由基本性质1(换掉M)

  a^[log(a)(M^n)] = {a^[log(a)(M)]}^n

  由指数的性质

  a^[log(a)(M^n)] = a^{[log(a)(M)]*n}

  又因为指数函数是单调函数,所以

  log(a)(M^n)=nlog(a)(M)

  基本性质4推广

  log(a^n)(b^m)=m/n*[log(a)(b)]

  推导如下:

  由换底公式(换底公式见下面)[lnx是log(e)(x),e称作自然对数的底]

  log(a^n)(b^m)=ln(b^m)÷ln(a^n)

  换底公式的推导:

  设e^x=b^m,e^y=a^n

  则log(a^n)(b^m)=log(e^y)(e^x)=x/y

  x=ln(b^m),y=ln(a^n)

  得:log(a^n)(b^m)=ln(b^m)÷ln(a^n)

  由基本性质4可得

  log(a^n)(b^m) = [m×ln(b)]÷[n×ln(a)] = (m÷n)×{[ln(b)]÷[ln(a)]}

  再由换底公式

  log(a^n)(b^m)=m÷n×[log(a)(b)]

    3622498