列方程解应用题数学说课稿
列方程解应用题是数学教学主要内容之一。接下来学习啦小编为你整理了列方程解应用题数学说课稿,一起来看看吧。
列方程解应用题数学说课稿
一、对教材的分析
列方程解应用题是在第七册学习列出含有未知数的等式解一步计算应用题的基础上进行教学的。共分四个层次,首先教学比较容易的两步计算的应用题,其次教学两、三步计算的应用题,本课内容是第三个层次,第四是用方程和算术方法解应用题的比较。列方程解含有两个未知数的应用题,是第一次出现在全国统编教材上。例6的内容,在算术中称为"和倍"和"差倍"问题,由于是逆向思考题,解法特殊,不易掌握,现在用方程来解,不仅思路较简单,而且这两类问题的思路统一,解法一致,既可减轻学生负担又提高了解应用题的能力,是今后小学学习分数等应用题的基础,也是今后到中学继续学习代数方程解应用题所必须具备的知识,必须重视这部分内容的教学。
本节课的教学目标是使学生初步掌握含有两个未知数的应用题的解题思路和方法,会解含有两个未知数的应用题;会用把两个未知数的值代入已知条件看是否符合的方法进行验算;在教学解题思路的同时培养学生初步的分析、综合、比较的能力;在解题过程中进一步培养初步的类推和迁移的能力及养成独立思考的良好习惯。
本节课的重点是正确设未知数和列出方程,关键要找出等量关系,列方程也是教学的难点。
二、对教学方法的选择
列简易方程解应用题是中学列代数方程解应用题的基础,选择教学方法时,要注意中小学教学的衔接。
本节课首先要考虑正确运用迁移原理,这对中、小学的学习都将具有积极作用。在准备阶段的练习题中,不论是数量关系和解题的方法对学习例6都具有迁移的作用,利用这一原理可引导学生直接去做例6后的"想一想",这既能培养迁 移推理能力,也能促使学生养成独立思考的习惯。
其次,由于小学生仍处在从形象思维向抽象思维过渡的关键时刻,所以要考虑怎样做好这个过渡,在教学中采用画线段图帮助分析数量关系。线段图能使数量关系明显地呈现出来,有助于帮助学生设未知数,找等量关系和列出方程。
第三还要考虑学法指导。本课要教会学生阅读、分析应用题的方法、验算的方法,从不同角度思考问题的方法。在教学检验方法时,采用阅读的方式,让学生边读边想并说出两个检验式子的含义与作用,从中悟出检验的方法。教完例6后引导学生想不同的解题思路,列出不同的方程,就是教学生如何从不同角度思考问题的方法。这些方法对今后继续学习数学是十分必要的。
三、对教学环节的安排
本课教学分三个阶段。
第一阶段是复习旧知,为学习新知做好铺垫。
主要针对新授的内容和学生不习惯用方程解及感到列方程有困难等问题设计了三个教学环节。一是基本训练,进行列方程的训练,如,x的5倍与x的和是80;根据题意把方程写完全的训练,如,果园里原有桃树x棵,杏树135棵,两种树一共有180棵。=180,=135;根据线段图列方程的训练,如,第二个环节是练习例6前的复习题,对学生再现了三年级的内容是为学习例6"架桥"。为学习新课予作准备。第三个环节是导入新课。从改变复习题中的问题和一个条件,将复习题变成例6。使学生感到数量关系并不生疏,但由于需要逆向思考,学生又感到难做,以激发学生学习动机,为学习新课提供良好的情感和认知的起点。(第一阶段需5分钟左右)
第二阶段是教学解答应用题的思路和方法,是教学的重点,也是难点。
按照列方程解应用题的一般步骤安排四个环节。一是审题。即,全面分析已知数与已知数、已知数与未知数、未知数与未知数之间的关系,画好线段图,找出已知数,并将其中的一个设为x,而另一个则根据题中的一个条件写成含x的代数式。解答例6就应先设桃树为x棵,根据杏树是桃数的3倍这一条件得出杏树为3x棵,画好的线段图如下:二是找出等量关系列出方程。前面设未知数时已使用了一个条件,现在用另一个条件来列方程。即根据桃树和杏树共180棵列出方程x+3x=180;也可根据桃树和杏树共180棵来设未知数,根据另一条件列方程。这时设桃树为x棵,杏树是(180-x)棵,列出的方程是180-x=3x;也可设杏树为x棵,根据杏树是桃树的3倍,得出桃树是13x棵,列出的方程是x+13x=180;也可根据另一个条件设未知数,即设杏树为x棵,桃树是(180-x)棵,列出的方程是x=3(180-x)。但后几种方程解起来不方便,有的方程目前学生还不会解,教学时可要求学生只列不解。这些方程的列出有利于全面掌握数量关系,也有利于掌握,先根据一个条件设第二个未知数,再根据另一个条件列方程的基本思路和方法。但不能要求全体学生都会列出,特别是中差生,只掌握书中的一种即可。列出这些方程后,学生自然会得出书中列出的方程容易解,为此,教育学生今后学习时,不仅要考虑列出的方程是否正确,还要考虑列出的方程是否易解的问题。
第四个环节是检验。虽不要求写在本子上或卷子上,但这是不可忽视的重要步骤,长期要求下去,就可使学生养成良好的检验习惯,增强责任心和自信心,那种做完题不知对错的做法是后患无穷的。(这个阶段需20分钟左右)。
第三阶段是巩固练习,安排三个层次。
一是巩固新知的练习,可做128页"做一做"中的题目。接着做"想一想"题目,让学生独立用解"和倍"题的方法解"差倍"题,完成知识的迁移。第二环节安排课堂上的独立作业(5分钟左右)让学生独立做129页练习三十一的第一、二题,(对较好的学生教师根据实际情况增加题目)做完之后要认真进行讲评、纠正错误和打开思维受阻之处。
最后做课堂小结和布置作业(129页练习三十一第3、4、5题)。(第三阶段需15分钟左右)。
列方程解应用题数学教学反思
本节课的教学目的是能让学生运用所学知识解决简单的实际问题,感受解简易方程与实际生活的密切联系,使学生初步掌握用列方程的方法解决实际问题的解题思路和方法;会把未知数的值代入已知条件看是否符合;在解决问题的过程中培养学生初步的分析、综合、比较的能力;在解题过程中进一步培养初步的类推和迁移的能力及养成独立思考的良好习惯。本节课是学生初次利用列方程解决实际问题,对学生来说有一定的难度,上完后,感觉有不少问题存在。首先我们应该知道,学生从具体的数过渡到抽象的用字母表示数,从用算术解决问题过渡到用方程解决问题,是认知学习方面的一个大转折。教学中除了让学生探究学习外,教师还要找到学生接受知识的关键点,从关键点切入,突破学生学习的难点,让学生顺利地过渡这个转折。下面是本人的几点粗略看法:
一、围绕等量关系,用字母表示数
用字母表示数是抽象的,初学用字母表示数的学生,还停留具体的数的层面上,运算的结果也还停留在具体的数字结果上。要用字母表示数,要用字母表示运算结果,一时还不适应。因此,初学用字母表示数,用等量关系切入,突破学生学习的难点,是一个很好的办法。
二、抓等量关系,列方程解决问题
用方程解决问题,是学生解决问题方法上的一大转折。学生从算术解决问题转向用方程解决问题,在学习认知方面产生一定的障碍。在思维方面,受算术解决问题的影响,在运用方程解决问题的过程中,自然而然又会回到算术解决问题的思维过程。
因此用方程解决问题,要抓好二个关键点。
第一:分析题意,找出问题中的主要数量。分析主要数量是找“等量关系”的前提,因此弄清题意,找主要数量很重要。
第二:根据主要数量,找等量关系。“等量关系”是学生列方程解决问题的依据,是学生列出方程的突破口和关键点。
三、教给方法,寻找“等量关系”
1.依据题目意思找“等量关系”
2.在关键句中找“等量关系”
3.在计算公式中找“等量关系”
四、抓方法比较,促进解决问题方法的分化
初学方程的学生,一开始算术解决问题干扰用方程解决问题;学习用方程解决问题之后,又回头干扰用算术解决问题。因此,学生用方程解决时,要善于进行算术解与方程解的比较,目的在于分化巩固算术解决问题,分化优化方程解决问题,同时也让学生理解方程的顺向思维。
总之,教师除了应该向学生讲清列方程解应用题的一般步骤、基本方法,从可直接言传的角度向学生展示解方程应用题的过程,使学生能仿此形式解决问题,表述问题;还应该间接地,从改善学生审题过程的心理品质出发,培养学生正确进行题意内化的能力,从而更有效地解决列方程解应用题的教学难点,努力实现以培养人的发展为宗旨的教学方针。
猜你感兴趣的:
4.初二年级数学教案