初中数学应用题教学研究论文(3)
初中数学教学研究论文篇三
论文摘要:运用数学知识解决实际问题是我们学数学的重要目的之一。随着新课程改革的深入,如何更好地培养学生运用数学知识解决实际问题的能力显得越来越重要。本文结合笔者多年的教学经验探讨了初中数学教学的策略问题。
一、教学的重要性
运用数学知识解决现实中的实际问题是我们学数学的重要目的之一,初中数学大纲中指出:“要学生会应用所学知识解决简单的实际问题,能适应社会日常生活和生产劳动的基本需要。”可以说培养学生解答的能力是使学生能够运用所学数学知识解决实际问题的基本内容和重要途径,因为反映了周围环境中常见的数量关系,需要用不同的数学知识把实际生活和一些简单科学技术知识联系起来,从而使学生既了解数学的实际应用,又初步培养了运用所学的数学知识解决实际问题的能力。此外,教学有利于培养学生学数学的兴趣,使学生感到数学是有用的,数学离我们并不遥远;还可以发展学生的逻辑思维能力,分析问题的能力,培养学生良好的思维品质和良好的道德品质等。而这些都是作为现代社会中具有较高的文化素养的公民必须具备的能力和品质。
二、当前教学的现状
(一)学生的基础薄弱
长久以来,传统的教育模式导致了学生重课本、轻生活,因而生活阅历有限,对的背景和情境不熟,教师们常常在教学中抱怨“学生的阅读理解能力差”。实际上,很多时候并不是学生的阅读理解能力差,而是学生阅历不足造成的。另外,很多学生遇到文字比较长的不知道怎样去分析,去寻找题中的数量关系,不知道怎样把实际问题化成一个数学问题,建立数学模型。我曾做过一次调查,针对所教的初一两个班的学生,入学后的第一次期中考试的得分情况是这样的:
考试中遇到,有信心,可以很快找到解题方法的占21%;信心不足,但会尽力去想办法解决,争取多得分的占42.1%;没有信心,根本不知道该如何下手的占36.9%,从调查的结果看,大多数学生对解存在畏难情绪,信心严重不足。
(二)传统教学方式和旧教材的影响
学生解的能力弱,与老师的教学不无关系。长期以来,我们的老师都比较重视知识的传授和解题,不太重视实践性活动的开展和教学,而且旧教材在这方面也比较缺乏,没有实践性活动的专题,而且一些的素材也比较陈旧,根本不能跟当今的现实生活相联系,使学生感到数学枯燥无味,没有用,老师又不注意引导,以致影响了的教学效果,甚至对整个数学科都产生不利影响。
(三)学生接受训练的机会较少
受应试教育思想的影响,一些教师认为文字叙述长,分析起来繁琐费时,课堂效率不高,而的解题能力又无法在短期内形成,在以往考试中所占的分数比重也不高,所以教学中分析探索过程往往一笔带过,更是很少作为一个专题进行学法指导。所以学生接受训练的机会少,自然解的能力只能一直处于低水平的状态。
三、优化教学的策略
(一)从基础入手,树立学生学的信心
从前面调查的结果看来,大多数学生对解存在畏难情绪,信心不足,不知道怎样去分析,去寻找题中的数量关系。要解决好这一问题,还是要先从基础抓起,从简单的开始。简单的背景较简单,语言较直接,容易使学生领会如何进行审题,理顺数量关系,容易建立数学模型,为解复杂一点的打下基础,又能带给学生成功解题的体验,增强学的信心。学生列方程解的一般思维过程:弄清问题——找等量关系——设未知数——列出方程。
(二)教学过程中及时渗透的教学
要提高学生解的能力,一定要在课堂上多渗透的教学,要善于结合教学内容,加强数学知识应用的渗透,适时地切入的教学,使学生有更多的接触训练的机会。其实,我们现在用的“华东师大版”教材,已经很好地注意到了数学的应用性,在讲每一个知识点之前,都先结合现实应用提出问题,也就是先以开头提出问题,引出悬念,然后才讲新知识。其实这就给我们提供了训练解能力的一个很好的机会,教师一定要注意在这一教学内容上的引导。比如,在讲“一元二次方程”这一章的开头就有这样一道:例2:绿苑小区住宅设计,准备在每两幢楼房之间,开辟面积为900平方米的一块长方形绿地,并且长比宽多10米,那么绿地的长和宽各为多少?这虽然是一道较简单的,一般学生很快就设出未知数列出方程,但这也是一个训练的机会,而且当学生发现所列出的方程跟以前所学过的不一样时,更激发了他们学习这一章新知识的兴趣。但是以的形式引出要学的新知识切忌提出的问题太复杂,让人很难理清头绪,这样既达不到训练的目的,更谈不上有引起学习新内容的兴趣了。总之,选题要遵循循序渐进的原则,围绕各种数学知识的应用,从简单到综合,逐步深入。
(三)重视过程教学,培养“建模能力”
“把实际问题化成一个数学问题,建立数学模型,这个过程称为数学建模”。建模能力是数学应用能力的核心,学生的能力差,最根本还是建模能力不强,怎样提高学生的建模能力呢?这就要求教师在平时教学中不可只展示结果,更应重视展示思维过程,引导学生分析探索问题,教会学生思考,例题的教学是关键。在初中阶段,常见的数学模型有下面几个:建立方程(组)模型、建立不等式(组)模型、建立直角坐标系、建立函数模型、统计型问题、建立三角模型、建立几何模型。教师可以分别进行专门练习,特别是在初三复习时,进行系统复习总结很有必要。
(四)培养数学兴趣,让学生觉得有动力
兴趣是动力的源泉,要获得持久不衰的学习数学的动力,就要培养学生的数学兴趣。在教学中我做到了以下几点:1.加强基础知识的教学,使学生能接近数学。数学并不神秘,数学就在我们周围,我们时时刻刻都离不开数学。2.重视数学的应用教学,提高学生对数学的认识。许多人认为,学那么多数学有什么用?日常生活中根本用不到。事实上,数学的应用充斥在生活的每个角落。以往的教材是和生活实践是脱节的,新教材在这方面有了很大改进,这也是向数学应用迈出的一大步,比如线性规划问题就是二元一次不等式组的一个应用。教学中重视数学的应用教学,能让学生充分感受到数学的作用和魅力,从而热爱数学。3.引入数学实验,让学生感受到数学的直观。让学生以研究者的身份,参与包括探索、发现在内的获得知识的全过程,使其体会到通过自己的努力取得成功的快乐,从而产生浓厚的兴趣和求知欲。4.鼓励攻克数学,使其在发现和创造中享受成功的喜悦。数学之所以能吸引一代又一代人为之拼搏,很大程度上是因为数学研究的过程中,充满了成功和欢乐。孔子说:知之者不如好之者,好之者不如乐之者,学生们学习乐在其中,才能培养出学生不断探索的欲望。
(五)通过多种途径转化文字语言
教会学生用画图、列表等方法转化文字语言,更好地理解清楚题意。
(六)鼓励质疑,激起向权威挑战的勇气
我们会经常遇到这样的情况:有的同学在解完一道题是时,总是想问老师,或找些权威的书籍,来验证其结论的正确。这是一种不自信的表现,他们对权威的结论从没有质疑,更谈不上创新。长此以往的结果,只能变成唯书本的“书呆子”。中学阶段,应该培养学生相信自己,敢于怀疑的精神,甚至应该养成向权威挑战的习惯,这对他们现在的学习,特别是今后的探索和研究尤为重要。若果真找出“权威”的错误,对学生来讲也是莫大的鼓舞。例如:抛物线y2=2px的一条弦直线是y=2x+5,且弦的中点的横坐标是2,求此抛物线方程。某“权威答案”如下:由y=2x+5,y2=2px得:4×2+(10-p)x+25=0①;由x1+x2=-(10-p)/4得p=2故所求抛物线方程为y2=4x。质疑:把p=2代入方程①,方程无实解,或方程①要有△=4p(p-20)>0,即p<0,或p>20,故p=2不合题意。本题无解。
教学中,对这样的新发现、巧思妙解及时褒奖、推广,能激起他们不断进取,努力钻研的热情。而且我认为,质疑教学,对学生今后独立创造数学新成果很有帮助,也是数学探索能力的一个重要方面。
四、结束语
随着新课程改革的深入,如何更好地培养学生运用数学知识解决实际问题的能力显得越来越重要,所以的教学不容忽视。作为数学教师,应依据学科教学的特点,在思想上高度重视,在行动上精心安排,认真落实优化教学,始终着眼于学生应用意识和能力的提高,将促进素质教育,学生素质也将会在教学中得到显著提高。
看过" 初中数学教学研究论文"的还看了: