学习啦>学习方法>通用学习方法>复习方法>

初二数学第一学期重点知识归纳

欣怡分享

  初二,最容易被忽略的年级,却也是最重要的阶段。如果说,初中年级的学生可以在初二把数学基础打好,那么初三学习数学就会少费一半的力气。下面是学习啦小编分享给大家的初二数学第一学期重点知识,希望大家喜欢!

  初二第一学期数学第二章重点知识

   实数

  1、认识无理数

  ① 有理数:总是可以用有限小数和无限循环小数表示

  ② 无理数:无限不循环小数

  2、平方根

  ① 算数平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算数平方根

  ② 特别地,我们规定:0的算数平方根是0

  ③ 平方根:一般地,如果一个数x的平方等于a,即x2=a。那么这个数x就叫做a的平方根,也叫做二次方根

  ④ 一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根

  ⑤ 正数有两个平方根,一个是a的算数平方,另一个是—,它们互为相反数,这两个平方根合起来可记作±

  ⑥ 开平方:求一个数a的平方根的运算叫做开平方,a叫做被开方数

  3、立方根

  ① 立方根:一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根,也叫三次方根

  ② 每个数都有一个立方根,正数的立方根是正数;0立方根是0;负数的立方根是负数。

  ③ 开立方:求一个数a的立方根的运算叫做开立方,a叫做被开方数

  4、估算

  ① 估算,一般结果是相对复杂的小数,估算有精确位数

  5、用计算机开平方

  6、实数

  ① 实数:有理数和无理数的统称

  ② 实数也可以分为正实数、0、负实数

  ③ 每一个实数都可以在数轴上表示,数轴上每一个点都对应一个实数,在数轴上,右边的点永远比左边的点表示的数大

  7、二次根式

  ① 含义:一般地,形如(a≥0)的式子叫做二次根式,a叫做被开方数

  ② =(a≥0,b≥0),=(a≥0,b>0)

  ③ 最简二次根式:一般地,被开方数不含分母,也不含能开的尽方的因数或因式,这样的二次根式,叫做最简二次根式

  ④ 化简时,通常要求最终结果中分母不含有根号,而且各个二次根式时最简二次根式

  初二第一学期数学第三章重点知识

   位置与坐标

  1、确定位置

  ① 在平面内,确定一个物体的位置一般需要两个数据

  2、平面直角坐标系

  ① 含义:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系

  ② 通常地,两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做x轴或者横轴,竖直的数轴叫y轴和纵轴,二者统称为坐标轴,它们的公共原点o被称为直角坐标系的原点

  ③ 建立了平面直角坐标系,平面内的点就可以用一组有序实数对来表示

  ④ 在平面直角坐标系中,两条坐标轴将坐标平面分成了四部分,右上方的部分叫第一象限,其他三部分按逆时针方向叫做第二象限,第三象限,第四象限,坐标轴上的点不在任何一个象限

  ⑤ 在直角坐标系中,对于平面上任意一点,都有唯一的一个有序实数对(即点的坐标)与它对应;反过来,对于任意一个有序实数对,都有平面上唯一的一点与它对应

  3、轴对称与坐标变化

  ① 关于x轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数;关于y轴对称的两个点的坐标,纵坐标相同,横坐标互为相反数

  初二第一学期数学第四章重点知识

   一次函数

  1、函数

  ① 一般地,如果在一个变化过程中有两个变量x和y,并且对于变量x的每一个值,变量y都有唯一的值与它对应,那么我们称y是x的函数其中x是自变量

  ② 表示函数的方法一般有:列表法、关系式法和图象法

  ③ 对于自变量在可取值范围内的一个确定的值a,函数有唯一确定的对应值,这个对应值称为当自变量等于a的函数值

  2、一次函数与正比例函数

  ① 若两个变量x,y间的对应关系可以表示成y=kx+b(k、b为常数,k≠0)的形式,则称y是x的一次函数,特别的,当b=0时,称y是x的正比例函数

  3、一次函数的图像

  ① 正比例函数y=kx的图像是一条经过原点(0,0)的直线。因此,画正比例函数图像是,只要再确定一点,过这个点与原点画直线就可以了

  ② 在正比例函数y=kx中,当k>0时,y的值随着x值的增大而减小;当k<0时,y的值随着x的值增大而减小

  ③ 一次函数y=kx+b的图像是一条直线,因此画一次函数图像时,只要确定两个点,再过这两点画直线就可以了。一次函数y=kx+b的图像也称为直线y=kx+b

  ④ 一次函数y=kx+b的图像经过点(0,b)。当k>0时,y的值随着x值的增大而增大;当k<0时,y的值随着x值的增大而减小

  4、一次函数的应用

  ① 一般地,当一次函数y=kx+b的函数值为0时,相应的自变量的值就是方程kx+b=0的解,从图像上看,一次函数y=kx+b的图像与x轴交点的横坐标就是方程kx+b=0

猜你喜欢:

1.八年级数学上册教学大纲

2.初二数学上册重要知识点总结

3.初二上册数学知识点总结有哪些

4.初二数学基本知识汇总

5.八年级上册数学教学工作计划范文

    3800261