学习啦>

数学学习心得体会10篇

翠翠分享

数学在生活中发挥着不可替代的作用,是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。以下是小编准备的数学学习心得体会,欢迎借鉴学习。

数学学习心得体会10篇

数学学习心得体会(篇1)

当你们正在《数学分析》课程时,同时又要学《高等代数》课程。觉得高等代数与数学分析不太一样,比较“另类”。不一样在于它研究的方法与数学分析相差太大,数学分析是中学数学的延续,其内容主要是中学的内容加极限的思想而已,同学们接受起来比较容易。

高等代数则不同,它在中学基本上没有“根”。其思维方式与以前学的数学迥然不同,概念更加抽象,偏重思辨与证明。尤其是下学期,证明是主要部分,虽然学时不少,但是理解起来仍困难。它分两个学期。我们上学期学的内容,可以归结为“一个问题”和“两个工具”。一个问题是指解线性方程组的问题,两个工具指的是矩阵和向量。你可能会想:线性方程组我们学过,而且解它用得着讲一门课吗?大家一定要明白,首先我们的方程组不像中学所学仅含2到3个方程,它只要用消元法即可容易地求出,这里的研究的是所有方程组的规律,也就是所必须找到4个以上方程组成的方程组的解的规律,这样就比较难了,需要对方程组有个整体的认识;再者,数学的宗旨是将看似不同的事物或问题将它们联系起来,抽象出它们在数学上的本质,然后用数学的工具来解决问题。

实际上,向量、矩阵、线性方程组都是基本数学工具。三者之间有着密切的联系!它们可以互为工具,在今后的学习中,你们只要紧紧抓住三者之间的联系,学习就有了主线了。向量我们在中学学过一些,物理课也讲。

中学学的是三维向量,在几何中用有向线段表示,代数上用三个数的有序数组表示。那么我们线性代数中的向量呢,是将中学所学的向量进行推广,由三维到n维(n是任意正整数),由三个数的有序数组推广到n维有序数组,中学的向量的性质尽可能推广到n维,这样,可以解决更多的问题;矩阵呢?就是一个方形的数表,有若干行、列构成,这样看起来,概念上很好理解啊。可是研究起来可不那么简单,我们以前的运算是两个数的运算,而现在的运算涉及的可是整个数表的运算!可以想象,整个数表的运算必然比两个数的运算难。但是我们不必怕,先记住并掌握运算,运算再难,多练几遍必然就会了。关键是要理解概念与概念间的联系。再进一步说吧:中学解方程组,有一个原则,就是一个方程解一个未知量。对于线性代数的线性方程组,方程的个数不一定等于未知量的个数。比如4个方程5个未知量,这样就不可能有唯一的解,需要将一个未知量提出来作为“自由未知量”,也就是将之当做参数(可以任意取值的常数);还有,即使是方程个数与未知量个数相同,也未必有唯一的解,因为有可能出现方程“多余”的情况。(比如第三个方程是前两个方程相加,那么第三个方程可以视为“多余”)

总之,解方程可以先归纳出以下三大问题:第一,有无多余方程;第二,解决了这三大问题,方程组的解迎刃而解。我们结合矩阵、向量可以提出完全对应的问题。刚才讲了,三者联系紧密,比如一个方程将运算符号和等号除去,就是一个向量;方程组将等号和运算除去,就是一个矩阵!你们说它们是不是联系紧密?大家可不要小看这三问,我认为它们可以作为学习上学期高代的提纲挈领。下学期主要讲“线性空间”和“线性变换”。所谓线性空间,就是将上学期所学的数域上的向量空间加以推广,很玄是吧?首先数域上的向量空间,是将向量作为整体来研究,这就是我们大学所学的第一个“代数结构”。所谓代数结构,就是由一个集合、若干种运算构成的数学的“大厦”,运算使得集合中的元素有了联系。中学有没有涉及代数结构啊?有的,比如实数域、复数域中的“域”就是含有四则运算的代数结构。

而向量空间的集合是向量,运算就两个:加法和数乘。起初向量及其运算和上学期学的一样。可是,它的形式有局限啊,数学家就想到,将其概念的本质抽取出来,他们发现,向量空间的本质就是八条运算律,因此将它作为线性空间(也称向量空间)的公理化定义,作为原始的向量、加法、数乘未必再有原来的形式了。比如上学期学的数域上的多项式构成的线性空间。继而,我们将数学中的“映射”用在线性空间上,于是有了“线性变换”的概念。说到底,线性变换就是线性空间保持线性运算关系不变的自身到自身的“映射”。

正因为保持线性关系不变,所以线性空间的许多性质在映射后得以保持。研究线性空间与线性变换的关键就是找到线性空间的“基”,只要通过基,可以将无数个向量的运算通过基线性表示,也可以将线性变换通过基的变换线性表示!于是,线性空间的元素真正可以用上学期的“向量”表示了!线性变换可以用上学期的“矩阵”表示了!这是代数中著名的“同构”的思想!通过这样,将抽象的问题具体化了,这也就是我们前边说的“矩阵”和“向量”是两大工具的原因。同学们要记住,做线性空间与线性变换的题时这样的转化是主方向!进一步:既然线性变换可以通过取基用矩阵表示,不同的基呢,对应不同的矩阵。我们自然想到,能否适当的取基,使得矩阵的表示尽可能简单。简单到极致,就是对角型。经研究,发现若能转成对角型的话,那么对角型上的元素是这样变换(称相似变换)的不变量,这个不变量很重要,称为变换的“特征值”。

矩阵相似变换成对角型是个很实用的问题,结果,不是所有都能化对角,那么退一步,于是有了“若当标准型“的概念,只要特征多项式能够完全分解,就可以化若当标准型,有一章的内容专门研究它。这样的对角型与若当标准型有什么用呢?我们利用它是同一个变换在不同基下的矩阵表示,可以通过改变基使得研究线性变换变得简单。最后的“欧氏空间”许多人不理解,一句话,就是仿照我们可见的三维空间,对线性空间引进度量,向量有长度、有夹角、有内积。欧氏空间有了度量后,线性空间的许多性质变得很直观且奇妙。我们要比较两者的联系与差别。此章主要讲了两种变换:对称变换与正交变换,正交变换是保持度量关系不变,对称变换在正交基下为对称阵。相似变换对角化问题到了这里变成正交变换对角化问题,在涉及对角化问题时,能用正交变换的尽量用正交变换,可以使得问题更加的容易解决。

说到这里,大家对高代有了宏观的认识了。最后总结出高代的特点,一是结构紧密,整个课程的知识点互相之间有着千丝万缕的联系,无论从哪一个角度切入,都可以牵一发而动全身,整个课程就是铁板一块。二是它解决问题的方法不再是像中学那样的重视技巧,以“点”为主,而是从代数的“结构”上,从宏观上把握解决问题的方案。这对大家是比较抽象,但是,没有宏观的理解,对此课程必然学不透彻!建议同学们边比较变学习,上学期的向量用中学的向量比较,下学期的向量用上学期的比较。在计算上理解概念,证明时注重整体结构。关于证明,这里一时无法尽言,请看我的《证明题的证法之高代篇》


数学学习心得体会(篇2)

一、将三门基础课作为一个整体去学,摒弃孤立的学习,提倡综合的思考

恩格斯曾经说过:“数学是研究数和形的科学。”这位先哲对数学的这一概括,从现代数学的发展来看,已经远远不够准确了,但这一概括却点明了数学最本质的研究对象,即为“数”与“形”。比如说,从“数”的研究衍生出数论、代数、函数、方程等数学分支;从“形”的研究衍生出几何、拓扑等数学分支。20世纪以来,这些传统的数学分支相互渗透、相互交叉,形成了现代数学最前沿的研究方向,比如说,代数数论、解析数论、代数几何、微分几何、代数拓扑、微分拓扑等等。可以说,现代数学正朝着各种数学分支相互融合的方向继续蓬勃地发展下去。

数学分析、高等代数、空间解析几何这三门基础课,恰好是数学最重要的三个分支--分析、代数、几何的最重要的基础课程。根据课程的特点,每门课程的学习方法当然各不相同,但是如果不能以一种整体的眼光去学习和思考,即使每门课都得了A,也不见得就学的很好。学院的资深教授曾向我们抱怨:“有的问题只要画个图,想一想就做出来了,怎么现在的学生做题,拿来就只知道死算,连个图也不画一下。”当然,造成这种不足的原因肯定是多方面的。比如说,从教的角度来看,各门课程的教材或授课在某种程度上过于强调自身的特点,很少以整体的眼光去讲授课程或处理问题,课程之间的相互联系也涉及的较少;从学的角度来看,学生们大都处于孤立学习的状态,也就是说,孤立在某门课程中学习这门课程,缺乏对多门课程的整体把握和综合思考。

根据我的经验,将高等代数和空间解析几何作为一个整体去学,效果肯定比单独学好,因为高等代数中最核心的概念是“线性空间”,这是一个几何对象;而且高等代数中的很多内容都是空间解析几何自然的延续和推广。另外,高等代数中还有很多分析方面的技巧,比如说“摄动法”,它是一种分析的方法,可以让我们把问题从一般矩阵化到非异矩阵的情形。因此,要学好高等代数,首先要跳出高等代数,将三门基础课作为一个整体去学,摒弃孤立的学习,提倡综合的思考。

二、正确认识代数学的特点,在抽象和具体之间找到结合点

代数学(包括高等代数和抽象代数)给人的印象就是“抽象”,这与另外两门基础课有很大的不同。以“线性空间”的定义为例,集合V上定义了加法和数乘两种运算,并且这两种运算满足八条性质,那么V就称为线性空间。我想第一次学高等代数的同学都会认为这个定义太抽象了。其实在高等代数中,这样抽象的定义比比皆是。不过这样的抽象是有意义的,因为我们可以验证三维欧氏空间、连续函数全体、多项式全体、矩阵全体都是线性空间,也就是说,线性空间是从许多具体例子中抽象出来的概念,具有绝对的一般性。代数学的研究方法是,从许多具体的例子中抽象出某个概念;然后通过代数的方法对这一概念进行研究,得到一般的结论;最后再将这些结论返回到具体的例子中,得到各种运用。因此,“具体--抽象--具体”,这便是代数学的特点。

在认识了代数学的特点后,就可以有的放矢地学习高等代数了。我们可以通过具体的例子去理解抽象的定义和证明;我们可以将定理的结论运用到具体的例子中,从而加深对定理的理解和掌握;我们还可以通过具体例子的启发,去发现和证明一些新的结果。因此,要学好高等代数,就需要正确认识抽象和具体的辩证关系,在抽象和具体之间找到结合点。

三、高等代数不仅要学代数,也要学几何,更要在代数和几何之间建立一座桥梁

随着时代的变迁,高等代数的教学内容和方式也在不断的发展。大概在90年代之前,国内高校的`高等代数教材大多以“矩阵论”作为中心,比较强调矩阵论的相关技巧;90年代之后,国内高校的高等代数教材渐渐地改变为以“线性空间理论”作为中心,比较强调几何的意义。作为缩影,复旦的高等代数教材也经历了这样一个变化过程,1993年之前采用的屠伯埙老师的教材强调“矩阵论”;1993年之后采用的姚慕生老师的教材强调“线性空间理论”。从单纯重视“代数”到“代数”与“几何”并重,这其实是高等代数教学观念的一种全球性的改变,可能这种改变与现代数学的发展密切相关吧!

学好高等代数的有效方法应该是:

深入理解几何意义、熟练掌握代数方法。

其次,高等代数中很多问题都是几何的问题,我们经常将几何的问题代数化,然后用代数的方法去解决它。当然,对于一些代数的问题,我们有时也将其几何化,然后用几何的方法去解决它。

最后,代数和几何之间存在一座桥梁,这就是代数和几何之间的转换语言。有了这座桥梁,我们就可以在代数和几何之间来去自由、游刃有余。因此,要学好高等代数,不仅要学代数,也要学几何,更要在代数和几何之间建立一座桥梁。

四、学好教材,用好教参,练好基本功

复旦现行的高等代数教材是姚慕生老师、吴泉水老师编著的《高等代数学(第二版)》。这本教材从1993年开始沿用至今,已有近20年的历史。教材内容翔实、重点突出、表述清晰、习题丰富,即使与全国各高校的高等代数教材相比,也不失为出类拔萃之作。

复旦现行的高等代数教学参考书是姚慕生老师编著的《高等代数学习方法指导(第二版)》(因为封面为白色,俗称“白皮书”)。这本教参书是数院本科生必备的宝典,基本上人手一册,风行程度可见一斑。

要学好高等代数,学好教材是最低的要求。另外,如何用好教参书,也是一个重要的环节。很多同学购买教参书,主要是因为教材里的部分作业(包括一些很难的证明题)都可以在教参书上找到答案。当然,这一点无可厚非,毕竟这就是教参书的功能嘛!但是,我还是希望一年级的新生能正确地使用教参书,遇到问题首先自己独立思考,实在想不出,再去看懂教参书上的解答,这样才能达到提高能力、锻炼思维的效果。注意:既不独立思考,又不看懂教参书上的解答,只是抄袭,这对自己来说是一种极不负责的行为,希望大家努力避免!

最后,我愿以华罗庚先生的一句诗“勤能补拙是良训,一份辛勤一份才”与大家共勉,祝大家不断进步、学业有成!


数学学习心得体会(篇3)

数学学科发展到现在,已成为了分支众多的学科之一,复变函数则是其中一个非常重要的分支,是19世纪,Cauchy, Riemann, Weierstrass 等数学家分别从不同角度建立了复变函数的系统理论,使复变函数真正成为分析数学的一个重要分支。

复变函数是复数域上的微积分,是基于解决数学内部矛盾的间接需要而产生的,是由于在生产实际和科学研究中发现了应用原型而发展起来的!

复变函数现在是大学理工科专业和数学院系数学类专业的一门重要的基础课,但是复变函数的学习要有高等数学的基础,如果没有这方面的知识,学习复变函数无疑会非常困难,因为这门课程在初学者看来非常抽象,理论性太强。作为复变函数的教学工作者,如何使得这门课程的课堂变得生动有趣,而且使学生在学习过程中容易理解,是我们不得不思考的问题。

由于复变函数的导数与可导性、微分与可微性是利用类比的方法从一元实变函数相应概念推广到复数域后得到的,它们在形式上与一元实变函数的导数、可导性与微分一致,因此在教学中应当勤于和善于比较,既要重视共性,更要注意不同点,切实关注在推广到复数域后出现了什么新情况和新问题,探讨出现新问题的原因何在。

在这篇报告中,王锦森先生非常生动地介绍了复变函数课程的改革思路和分别讨论了复变函数教学中的难点和重点,并且这些难点和重点的教学方法。

难点和重点介绍方面:讨论了“在复变函数可导性(从而判断函数解析性)的充要条件中,为什么要求函数的实部和虚部必须满足Cauchy-Riemann方程?”内在含义,复变函数的导数的几何意义是否跟实变函数导数的几何意义相同?,一元实函数的微分中值定理能不能推广到复变函数中来?,复变初等函数与相应的实变初等函数之间的关系与差别,复变函数的积分与一元实变函数的第二型曲线积分的不同之处,即,它们积分和式的结构不同,积分的表达形式不同,物理意义不同等等,还讨论了学习Cauchy-Goursat 基本定理应当注意的几个问题,复变函数积分中有没有与一元实变函数微积分中的微积分基本定理和Newton-Leibniz公式相对应的结论等等。

这些难点和重点教学法方面介绍了类比教学法,化“复”为“实”,用“已知”解决“未知”的思想等教学法。

参加培训之前我没有考虑过这些问题,通过这次学习,我对这些难点与重点的认识进一步深入了。以后的教学过程中用到所学的知识,为提高教学质量而努力。


数学学习心得体会(篇4)

这个学期学了小数,第一单元我发现还是很简单的,跟之前的数字加减,并没有什么区别,到第三单元我也还是以为跟数字的相乘一样的。我上课就没有认真听了,那天在做口算的时候我突然发现自己不会算了。

比如0.89__1.2在写竖式的时候,我就不知道该怎么对齐了,应该是向左对齐?还是向右对齐?还是以小数点位对齐?还有这个小数点应该点哪里我真的就不懂了。

我当时真的蒙了,所以我整页作业都不会做了,我终于知道自己没有认真听课的后果了,于是我去问妈妈,妈妈说她也不知道,让我把书拿过来跟我一起看,但是我还是没有看懂,妈妈就告诉我书上40页的那个例子已经写得很清楚了,于是我又看了一次,发现了小数的乘法的计算是有这样的几步的:首先列式的时候应该是向右对齐的,然后计算的时候是不用点小数点的,要把数字的小数点不看,再然后就是算出结果之后再点小数点,点小数点的时候应该要数出两个乘数中一共有几位小数点,最后在结果中把小数点点上就得到结果。

上面的这题就要按最后的一种方法,算出来是1068,数出小数点0.89里有两位,1.2里有一位,一共就有三位小数,那么这个数就是1.068。

如果最后只有一位小数点,而最后一位是0的话,那就要把0去掉,变成一个整数了。

比如0.4__5=2.0,我就可以写成2。

如果是有四位小数点,而这个数也只有三位的话,就在在最前面加0,再点上小数点。比如0.78__0.04=312(还没有点小数),我就要在前面补上00,再点上3位小数,变成0.0312。

所以虽然都是乘法,但是我自以为是了,就不会去学习新的内容了,那么每节课新的知识点我就不懂了,我可能就不会算了,在生活中也就闹大笑话了。所以不管内容是不是很简单都应该要认真听课,才能掌握好知识。


数学学习心得体会(篇5)

数学是一们基础学科,我们从小就开始接触到它。现在我们已经步入高中,由于高中数学对知识的难度、深度、广度要求更高,有一部分同学由于不适应这种变化,数学成绩总是不如人意。甚至产生这样的困惑:“我在初中时数学成绩很好,可现在怎么了?”其实,学习是一个不断接收新知识的过程。正是由于你在进入高中后或学习态度的影响,才会造成学得累死而成绩不好的后果。那么,究竟该如何学好高中数学呢?以下我谈谈我的高中数学学习心得。

一、认清学习的能力状态。

1、心理素质。我们在高中学习环境下取决于我们是否具有面对挫折、冷静分析问题的办法。当我们面对困难时不应产生畏惧感,面对失败时不应灰心丧气,而要勇于正视自己,及时作出总结教训,改变学习方法。

2、学习方式、习惯的反思与认识。(1)学习的主动性。我们在进入高中以后,不能还像初中时那样有很强的依赖心理,不订学习,坐等上课,课前不预习,上课忙于记笔记而忽略了真正的听课,顾此失彼,被动学习。(2)学习的条理性。我们在每学习一课内容时,要学会将知识有条理地分为若干类,剖析概念的内涵外延,重点难点要突出。不要忙于记笔记,而对要点没有听清楚或听不全。笔记记了一大摞,问题也有一大堆。如果还不能及时巩固、总结,而忙于套着题型赶作业,对概念、定理、公式不能理解而死记硬背,则会事倍功半,收效甚微。(3)忽视基础。在我身边,常有些“自我感觉良好”的同学,忽视基础知识、基本技能和基本方法,不能牢牢地抓住课本,而是偏重于对难题的攻解,好高骛远,重“量”而轻“质”,陷入题海,往往在考试中不是演算错误就是中途“卡壳”。(4)不良习惯。主要有对答案,卷面书写不工整,格式不规范,不相信自己的结论,缺乏对问题解决的信心和决心,遇到问题不能独立思考,养成一种依赖于老师解说的心理,做作业不讲究效率,学习效率不高。

二、努力提高自己的学习能力。

1、抓要点提高学习效率。(1)抓教材处理。正所谓“万变不离其中”。要知道,教材始终是我们学习的根本依据。教学是活的,思维也是活的,学习能力是随着知识的积累而同时形成的。我们要通过老师教学,理解所学内容在教材中的地位,并将前后知识联系起来,把握教材,才能掌握学习的主动性。(2)抓问题暴露。对于那些典型的问题,必须及时解决,而不能把问题遗留下来,而要对遗留的问题及时、有效的解决。(3)抓思维训练。数学的特点是具有高度的抽象性、逻辑性和广泛的适用性,对能力要求较高。我们在平时的训练中,要注重一个思维的过程,学习能力是在不断运用中才能培养出来的。(5)抓45分钟课堂效率。我们学习的大部分时间都在学校,如果不能很好地抓住课堂时间,而寄希望于课外去补,则会使学习效率大打折扣。

2、加强平时的训练强度。因为有些知识只有在解题过程中,才能体会到它的真正含义。因此,在平时要保持一定的训练度,适量地做一些有典型代表性的题目,弄懂吃透。

3、及时的巩固、复习。在每学完一课内容时,可抽出510分钟在课后回忆老师在课堂上所讲的内容,细划分类,抓住概念及其注释,串联前后知识点,形成一个完整的知识网络。

总之,高中数学的学习过程是一个“厚积薄发”的过程,我们要在以后的学习生活中加强对应用数学思维和创新思维的方法与能力的培养与训练,从长远出发,提高自己的学习能力。希望同学们能从中有所收获,改进自己的学习方法,提高自己的数学成绩!


数学学习心得体会(篇6)

一、提升学习兴趣。

首先,不要先入为主的认为自己对学习不感兴趣,要注意感觉每一个可能让自己感兴趣的细节。

作为学生,因为个体的认知结构不同,每个人都可能出现对个别课程不感兴趣的情况。但为了系统的掌握知识,建立合理的认知结构,我们必须把心里对一些课程的排斥放下。积极的参与,从心理上亲近,以一种好奇眼光看待这些课程。而且,所有的知识都是融会贯通的,你可以以自己感兴趣的科目为出发点,将所有的知识体系化,从而培养对其他功课的兴趣。

其次,认真是对产生兴趣的重要来源。

许多抱怨对学习没有兴趣的同学对没有真正认真的对待学习,其实,认真是和兴趣成正比的,你的学习认真了,不仅会取得好成绩,还能享受知识本身给你带来得成就感,成就感和好的成绩就会刺激你对学习的兴趣,而兴趣又会促使你更加认真的去学习,从而取得更好的成绩。形成良性循环,互相促进,学习的兴趣会越来越浓,甚至到入迷的地步。

第三,寻找积极的情绪体验

情感是滋生兴趣的催化剂,积极的情感体验会使人将一种行为进行下去,中学生在学习过程中要调节自己的情感,不要抱着消极的或应付的态度去学习,努力在学习中获得真正的乐趣和满足,还可以寻找课本中对自己成长的种种帮助和好处,这些都有利于学习兴趣的提高。

第四,科学安排学习时间

一般的说当一个人连续长时间的学习同一内容时,就会感到 乏味和疲劳。因此,同学们要劳逸结合。该休息时休息,该学习时学习,而且学习时间安排要科学。文理科交叉、难易交叉,才能效能最大化。另外,每天在固定的时间学习也是保持学习兴趣的方法,习惯在特定时间出现的兴奋性和学习密切相关哦。

第五,勤于计划,总结,知己知彼

对每一个科目内容、自己的程度有一个明确的认识,知道自己在进步可以促进成就感,知道自己离目标已经很近可以激发出兴奋和激情。这些都是学习的的动力,如果你给自己作了明确的分析,你会发现你的学习兴趣简直是在呈几何技术增长呢。

二、【初一数学学习心得】:合理安排时间。

凡事预则立,不预则废。每周最好能够简单拟定一个学习计划,最好能细致些,具体到每周一到五的晚上,作业完成之后还需要做哪些事情,周末的早、午、晚每个时间段做什么、学什么、复习什么。

三、【初一数学学习心得】:不偏科。

我们大家都是普通的孩子,除非自己对某个学科非常偏好,否则还是千万不要放弃任何一科。当然,做到科科全优是一件非常困难的事情,做到这一点非常不容易,那么对于自己比较喜欢、学起来比较顺手的学科,一定要将基础知识吃透,保证不丢分;对于自己感觉头痛的学科,要做好计划,重点投入,争取能在自己可控的范围内有比较大的提升。

也就是,千万不要轻易的放弃任何一门功课,因为放弃的这门功课就是自己的短木板。

四、【初一数学学习心得】:专心听课。

老师讲课的时候,一定要专心听讲,紧跟老师的思路,认真做好笔记。老师在课堂上讲解很多内容是他们多年教学实践的经验所得,在课本上根本找不到,但恰恰是这些内容,对培养我们的分析、判断和推理能力具有很大的帮助。

五、【初一数学学习心得】:错题本。

设一个错题本,小到作业,中到随堂考、大到月考、期中、期末,将自己所做错的所有题目全部及时的收集整理,对每道自己做错的题目进行详细分析,找出造成错误的症结所在,明白自己的薄弱环节,及时查漏补缺。

平常没有事情的时候,可以经常翻翻自己的错题本,回忆一下当时更改的过程,从而可以巩固薄弱的知识点。

尤其在考试之前,没有必要大量的做题,只要翻翻错题本,保证所有的错题涉及到的知识都已掌握,成功就在近在咫尺了。

六、【初一数学学习心得】:适当放松。

千万不要从睁开眼睛,一直学到晚上闭上眼睛,大人还有个审美疲劳呢,不要说我们还是孩子,这样做的结果会适得其反,可能会造成厌恶学习,所以,我们一定要注意劳逸结合,保证睡眠时间,按时作息,充分休息好,以保持充沛的精力,旺盛的斗志。以这种状态去学习,收效会更大。

但是,放松也是一门学问,要按自己的兴趣放松。例如,在可以在家里到处放一些书,可以在学习之余随手拿起翻翻看,可以不用非常认真的只读一本书,浏览即可,起到放松的作用,同时又增加了很多课外知识。

七、【初一数学学习心得】:良好的应试心态。

有时候考试发挥失常,成绩不是很理想,不能影响自己的学习和生活。好马还有失前蹄的时候呢,我们完全不要太在意一次考试,因为我们的实力还在,不要因为一次失误就全盘否定自己。另外,考试中发现的问题,正好给我们提高改进自己提供了一个比较明确的方向,改进自己的不足,总比真正中考中才遇到来的好。

要多与同学交流学习心得和体会,正确对待自己的短板,发挥自己的长处。均衡对待所有功课,不要抛弃任何一科。比较优秀的科目一定要保持足够的重视,稍微弱的一些的要努力正确提高,确实没有掌握的,不要投太多的精力,免得顾此失彼。树立良好的自信心,相信自己的能力。

老师教给我们的一些学习方法和习惯,只要坚持下去,受益是必然的。我们可以不跟别人争,但不能不跟自己争。只有超越自我的人,才能真正地成功。


数学学习心得体会(篇7)

今天再次学习《小学数学新课程标准》,使我领悟到了教学既要加强学生的基础性学习,又要提高学生的发展性学习和创造性学习,从而培养学生终身学习的愿望和能力,让学生享受“快乐数学”,因此,本人通过对新课程标准的再学习,有以下的认识:

一、备课:变“备教材”为“备学生”

教师在备课过程中备教的方法很多,备学生的学习方法少。老师注意到自身要有良好的语言表达能力(如语言应简明扼要、准确、生动等),注意到实验操作应规范、熟练,注意到文字的表达(如板书编写有序、图示清晰、工整等),也注意对学生的组织管理,但对学生的学考虑不够。老师的备课要探讨学生如何学,要根据不同的内容确定不同的学习目标;要根据不同年级的学生指导如何进行预习、听课、记笔记、做复习、做作业等;要考虑到观察能力、想象能力、思维能力、推理能力及总结归纳能力的培养。一位老师教学水平的高低,不仅仅表现他对知识的传授,更主要表现在他对学生学习能力的培养。

二、上课:变“走教案”为“生成性课堂”

教学过程是一个极具变化发展的动态生成的过程,其间必然有许多非预期的因素,即便教师对学情考虑再充分,也有“无法预知”的场景发生,尤其当师生的主动性、积极性都充分发挥时,实际的教育过程远远要比预定的、计划中的过程生动、活泼、丰富得多。教师要利用好即时生成性因素,展示自己灵活的教学机智,不能牵着学生的鼻子“走教案”。

要促成课堂教学的动态生成,教师要创造民主和谐的课堂教学氛围。如果我们的课堂还是师道尊严,学生提出的问题,教师不回答,不予理睬,或马上表现出不高兴,不耐烦,那学生的学习积极性一定大打折扣,因而要让我们的课堂充满生气,师生关系一定要开放,教师要在教学中真正建立人格平等、真诚合作的民主关系。同时教师要高度重视学生的一言一行,在教与学的平台上,做到教学相长,因学而教,树立随时捕捉教学机会的意识,就必定会使我们的课堂教学更加活泼有趣,更加充满生机,也更能展示教师的无穷魅力。课堂提问注意开放性。

开放性的提问,没有统一的思维模式与现成答案,学生回答完全是根据自已的理解回答。答案一定会是丰富多彩,这可以作为我们教师的教学资源。教师根据这些答案给予肯定、或给予引导,使学生的思想认识在教师的肯定或引导中得到提高。要促进课堂教学的动态生成,还要充分发挥教师的教学智慧,教师对教育过程的高超把握就是对这种动态生成的把握。

三、变“权威教学”为“共同探讨”

新课程倡导建立自主合作探究的学习方式,对我们教师的职能和作用提出了强烈的变革要求,即要求传统的居高临下的教师地位在课堂教学中将逐渐消失,取而代之的是教师站在学生中间,与学生平等对话与交流;过去由教师控制的教学活动的那种沉闷和严肃要被打破,取而代之的是师生交往互动、共同发展的真诚和激情。因而,教师的职能不再仅仅是传递、训导、教育,而要更多地去激励、帮助、参谋;师生之间的关系不再是以知识传递为纽带,而是以情感交流为纽带;教师的作用不再是去填满仓库,而是要点燃火炬。学生学习的灵感不是在静如止水的深思中产生,而多是在积极发言中,相互辩论中突然闪现。学生的主体作用被压抑,本有的学习灵感有时就会消遁。

四、变“教师说”为“学生多说”

教学中教师要鼓励、引导学生在感性材料的基础上,理解数学概念或通过数量关系,进行简单的判断、推理,从而掌握最基础的知识,这个思维过程,用语言表达出来,这样有利于及时纠正学生思维过程的缺陷,对全班学生也有指导意义。教师可以根据教材特点组织学生讲。有的教师在教学中只满足于学生说出是与非,或是多少,至于说话是否完整,说话的顺序如何,教师不太注意。这样无助于学生思维能力的培养。数学教师要鼓励、指导学生发表见解,并有顺序地讲述自己的思维过程,并让尽量多的学生能有讲的机会,教师不仅要了解学生说的结果,也要重视学生说的质量,这样坚持下去,有利于培养学生的逻辑思维能力。

根据小学生的年龄特点,上好数学课应该尽量地充分调动学生的各种感官,提高学生的学习兴趣,而不能把学生埋在越来越多的练习纸中。例如,口算,现在已经名不副实,多数用笔算代替,学生动手不动口。其实,过去不少教师创造了很多口算的好方法,尤其在低年级教学中,寓教学于游戏、娱乐之中,活跃了课堂气氛,调动了学生学习积极性,其它教材也可以这样做。我们不能把数学课变成枯燥无味、让学生学而生厌的课。在数学课上,教师要引导学生既动手又动口,并辅以其它教学手段,这样有利于优化课堂气氛,提高课堂教学效果,也必然有利于提高教学质量。

总之,面对新课程改革的挑战,我们必须转变教育观念,多动脑筋,多想办法,密切数学与实际生活的联系,使学生从生活经验和客观事实出发,在研究现实问题的过程中做数学、理解数学和发展数学,让学生享受“快乐数学”。


数学学习心得体会(篇8)

小学数学课程改革实施过程中,一边实践,一边成长,不断地吸收了新的教学理念。体验了一个学期的数学教学,我颇有感触。在新课程的标准下,学生需要在自主探究中体验“再创造”,在实践操作中体验“做数学”,在合作交流中体验“说数学”,在联系生活中体验“用数学”。学生体验学习,是用心去感悟的过程,在体验中思考、创造,有利于培养创新精神和实践能力,提高学生的数学素养。而传统的数学教学是学生被动吸收、机械记忆、反复练习、强化储存的过程,没有主体的体验。然而在新课程中,教师只不过是学生自我发展的引导者和促进者。而学生学习数学是以积极的心态调动原有的认知和经验,尝试解决新问题、理解新知识的有意义的过程。

《数学课程标准》提出:“要让学生在参与特定的数学活动,在具体情境中初步认识对象的特征,获得一些体验。”所谓体验,就是个体主动亲历或虚拟地亲历某件事并获得相应的认知和情感的直接经验的活动。让学生亲历经验,不但有助于通过多种活动探究和获取数学知识,更重要的是学生在体验中能够逐步掌握数学学习的一般规律和方法。教师要以“课标”精神为指导,用活用好教材,进行创造性地教,让学生经历学习过程,充分体验数学学习,感受成功的喜悦,增强信心,从而达到学会学习的目的。

一、教学方式、学习方式的转变

新课程教材内容已经改变了知识的呈现形式,这是一大亮点,教师作为教学内容的加工者,应站在发展学生思维的高度,相信学生的认知潜能,对于难度不大的例题,大胆舍弃过多、过细的铺垫,尽量对学生少一些暗示、干预,正如“教学不需要精雕细刻,学生不需要精心打造”,要让学生像科学家一样去自己研究、发现,在自主探究中体验,在体验中主动建构知识。学习方式的转变是本次课程改革的显著特征,积极培养学生主动参与,乐于探究,勤于动手,分析和解决问题以及合作交流的能力,改变学生从前单一、被动的学习方式。

二、从新课标看“学生”

在学习和尝试使用新教材的过程中,我越发感受到了学生学习数学的潜能是很大的,不可低估的,把数学放在了生活中,学生的潜能则像空气一样,充斥着生活的舞台,学生在学习时发挥着自身巨大的能量。如在学习“时分秒的认识”之前,让学生先自制一个钟面模型供上课用,远比带上现成的钟好,因为学生在制作钟面的过程中,通过自己思考或询问家长,已经认真地自学了一次,课堂效果能不好吗?如:一张长30厘米,宽20厘米的长方形纸,在它的四个角上各剪去一个边长5厘米的小正方形后,围成的长方体的体积、表面积各是多少?学生直接解答有困难,若让学生亲自动手做一做,在实践操作的过程中体验长#方形纸是怎样围成长方体纸盒的,相信大部分学生都能轻松解决问题,而且掌握牢固。

总之,体验学习需要引导学生主动参与学习的全过程,在体验中思考,锻炼思维,在思考中创造,培养、发展创新思维和实践能力。当然,创设一个愉悦的学习氛围相当重要,可以减少学生对数学的畏惧感和枯燥感。让学生亲身体验,课堂上思路畅通,热情高涨,充满生机和活力;让学生体验成功,会激起强烈的求知欲。同时,教师应该深入到学生的心里去,和他们一起历经知识获取的过程,历经企盼、等待、焦虑、兴奋等心理体验,与学生共同分享获得知识的快乐,与孩子们共同“体验学习”。


数学学习心得体会(篇9)

相信我们当中许多老师和同学都看过《功夫》,它讲述了一个喜爱功夫却毫无功底的剧中人物最终练成绝世功夫,成就大业的故事。其中李连杰饰扮演的默僧在传授杰森功夫时,有一段精彩对白:“画家以泼墨山水为功夫,屠夫以庖丁解牛为功夫,从有形中求无形,充耳不闻,习万招之法,从有招到无招,习万家之变,才能自创一家,乐师以辗转悠扬为功夫,诗人以天马行空的文字倾国倾城,这也是功夫……”

套用上述对白,我们也可以说,学生以解题为功夫,习万题之法,从有招到无招,习万题之变,才能自创一家,它揭示了学习是一个自我领悟的过程,是一个自我思考,自我反思,自我的过程。那么,如何在学习过程中实现“悟”呢?

其一,数学的学习是学会独立思考的过程。数学学习要防止死记硬背,不求甚解的倾向,学习中多问几个为什么,多沉下心来琢磨琢磨,做到举一反三,融会贯通。听课时要边听边思考,思考与本节课相关的知识体系,思考教师的思路,并与自己的比较。在老师没有作出判断、结论之前,自己试着先判断、下结论,看看与老师讲的是否一致,并找出错误的原因。独立思考能力是学习数学的基本能力。

其二,数学学习过程是一个需要反复练习的过程,也是一个熟能生巧的过程。反复练习正是为了达到悟的结果及培养对数学的理解和感觉。训练的过程需要经历一个由量变到质变,一个无形无状的过程。当然由于每个人知识结构、思维水平和理解能力的差异,训练的过程和量是不同的,但无论如何不能“为解题而解题”。

其三,数学的学习过程是把握数学精神的过程。数学的精神在于用数学的思想、方法、策略去思考问题。有些学生对数学无论怎样练习,也始终难以找到对数学的感觉。这就需要我们在学习过程中从问题解决形成一般的结论,领悟问题解决中数学思想、方法、策略的应用。这个过程单凭老师教将很难使学生达到理念的升华。当然,这并非削弱教师的作用,而是体现学生悟的重要性,将所理解的知识嵌入已有的知识结构中才能达到真正的理解和掌握。

其四,自信是学好数学的必要条件。自信源于对数学的热情、对自我的认可、对数学契而不舍的执着精神以及坚实的数学基本功。曾经有位学生在阐述他对基本功的理解时说:“从今天起我所做的每一道题高考肯定不考,高考的每一题会做,并不保证都能做对,要关注对,而不仅仅是会,解决问题的方法是反复,不要因为这题简单而不去做,不要因为这题做过三遍而不去做,可为难题放弃,绝不可为简单题而放弃,这些就是基本功”。

总之,学好数学不仅是为了应付高考,或是为将来进一步学习相关专业打好基础,更重要的目的是接受数学思想、数学精神的熏陶,提高自身的思维品质和科学素养,果能如此,将终生受益。最后,祝愿每位同学学习进步。

数学学习心得体会(篇10)

许多同学报怨数学很难学习,老师讲的总是听得丈二和尚——摸不着头脑。我认为,学数学是有方法的,只要你掌握了这些方法并加以运用,相信数学将成为你的朋友。

学数学首先就是要善于思考。如果把数学比作一把锁的话,那思考就是一把开锁的金钥匙,为你打开这把数学之锁。例如有的同学上课认真听,能把老师讲的内容全部吞下去,却不去消化,不会吸收,最终还是“营养不良”。这是因为他没养成思考的好习惯,不能将老师讲授的东西再加工,不能进行分类整理,更不了解道路的来龙去脉,当然就无法掌握知识的真面目了。

我们要学习蜜蜂那样的工作方法,既会采蜜,又会酿蜜。在这方面,有的同学就做的比较好,他们在上课不仅专心听讲,他们在老师讲某一题的解题方法时就思考,思考出这样解的道理,虽然后再推出解这一类题的方法,这样就把老师交的融会贯通了。

我们在学习数学的同时,要注意培养自己善于思考的好习惯,学会灵活运用,举一反三,这样才能取得事半功倍的好成绩。有人说:“数学是深奥的,变化莫测的,让人搞不懂,猜不透”。但在我眼里,数学是一套打满结的绳索,你必须耐心地解开一个又一个的死结,终有一天你一定能解开所有的结。

数学是利用学过的知识来解决未知的问题。学习数学要有毅力、有耐心、有恒心。正如一个挖井的人,挖了很深,就快接近水源时,却放弃;了,先前做的就都白费了,功亏一篑。

学数学时,不要总是认为每一道题就一定只有一种解答方法,“条条大路通罗马”,要试着去探究,去思考,去发现。有主见,有信心,也是学习数学必不可少的。不要总认为老师讲的课本上写的一定是正确的,要有自己的主见,不能人云亦云。每个人都要对自己有信心,一个人不可能永远成功,在面对失败时,要对自己有信心,相信自己一定能行。

学习,就一定要先预习,再加上上课时的认真听讲,学起来便可以轻松许多。我们学校今年在学习杜郎口中学,十分提倡自学这种新的模式,我认为这样很好,可以激发我们的学习热情。另外,为了上课时学生讲数学题更加流利,可以当一回“老师”,在课前准备一份教案,清楚自己在这节课中该怎样讲和先讲什么,后讲什么。以免,上台紧张,什么都说不上来。

我学习数学,除了平时的预习,还会在开学之前,在暑假和寒假的充沛时间里,先把数学课本从头到尾略看一遍,抓到一些知识,大概了解数学课本的一些内容。了解哪些内容简单,哪些复杂。每当老师讲完一节课,我还会认真地看一次该课的内容,在挖掘一些什么出来。这时,我的看书心得,独立思考完成好作业,是必然不可少的。我还会挤些课余时间做些相关练习,更好的理解、掌握、巩固所学知识。虽然现在学习是很累,但如果我们能以自己的理想为目标,以学习为乐,那就可以变累为乐,快乐地学习数学了。现在不吃苦,将来肯定会吃更多的苦,现在多吃苦,以后可以免掉许多苦,所以我们应该现在勤奋学习。

“大意失荆州,不要等到做错了再后悔不已,世上没有过后悔药。”是的学习数学最大的敌人就是粗心。做练习马马虎虎,如数学上的公式、定义记不牢,那就容易搞混淆,使你做题出现些问题,甚至把题目搞反了,这种张冠李戴的学习方法是不成的。“世上无难事,只怕有心人。”我们每一个人都应认真对待,平时的习惯不养好,以后就会错误百出。判案高手宋慈因一时疏忽,造成了冤假错案的发生。那更何况是我们呢?

所以,我认为学好数学的关键就在于:1.要善于思考;2.要有毅力,有耐心,有恒心;3.应学会探索,养成可前预习,课后总结复习,不耻下问;4.不马虎,做题细心。

我相信,只要你掌握了以上几点,你的智慧钥匙定能解开这把数学之锁。加油吧,为自己喝彩,尽情地在数学的海洋中遨游吧,收获属于自己的璀璨的数学明珠。

    1774403