引力波是怎么形成的呢
在物理学中,引力波是指时空弯曲中的涟漪,通过波的形式从辐射源向外传播,这种波以引力辐射的形式传输能量。是什么原因导致引力波的形成呢?以下是由学习啦小编整理关于引力波是怎么形成的的内容,希望大家喜欢!
引力波形成的原因
具有质量的物体变动时,会产生“引力波”
爱因斯坦用爱因斯坦场方程阐述了时间、空间与万有引力的关系。由方程可知,“物质和能量的分布发生变化时,时空结构也将改变”。具有质量的物体运动时,物质和能量的分布将发生变化,从而导致时空结构的变化。
爱因斯坦认为,时空结构的变化将以“波”的形式传播,这就是“引力波”。
引力波使得空间纵横交错地收缩或扩张
物体的质量和运动速度决定了引力波的大小。质量越大的物体以越快的速度运动时,形成的引力波越强。例如,两个中子星共同组成双星时的引力波就很强。
引力波所引起的空间变化(收缩或扩张)
发出引力波的中子星联星
中子星是几乎完全由中子(构成原子核的粒子)构成的密度极高的天体。1立方厘米的质量高达10亿吨左右。当两个中子星围绕着共同的引力中心运转时,则组成双星。
高密度、大质量的中子星所组成的联星公转时会连续不断地引发时空弯曲,从而形成引力波,扩散到四面八方。而且,该时空弯曲会随着两个中子星的公转连续不断地产生,并形成引力波,扩散到周围的时空中。
发出引力波的中子星联星
由于无法描绘三维空间的弯曲,因此,图解仅仅描绘了水平方向的引力波。
研究表明,引力波在时空中传播时,空间将会纵向或横向扩张。如果能够测量到空间纵横交错地收缩或扩张的话,就能观测到引力波。
直接“捕获”引力波相当困难
直接“捕获”引力波是非常困难的。这是因为,引力波是自然界中最微弱、最不易察觉的波。虽然像中子星那样质量巨大的物体在做加速运动时会辐射引力波,但是,在遥远的宇宙中所形成的引力波对地球周围空间的影响却极其微弱。引力波在通过像太阳与地球那样距离遥远(1.5亿公里)的两个物体时,引起的空间变化(收缩或扩张)只相当于一个氢原子直径(1.5×10-10米)的大小。
引力波的探测历史
在过去的六十年里,有许多物理学家和天文学家为证明引力波的存在做出了无数努力。其中最著名的要数引力波存在的间接实验证据——脉冲双星 PSR1913+16。1974年,美国麻省大学的物理学家家泰勒(Joseph Taylor)教授和他的学生赫尔斯(Russell Hulse)利用美国的308米射电望远镜,发现了由两颗质量大致与太阳相当的中子星组成的相互旋绕的双星系统。由于两颗中子星的其中一颗是脉冲星,利用它的精确的周期性射电脉冲信号,我们可以无比精准地知道两颗致密星体在绕其质心公转时他们轨道的半长轴以及周期。根据广义相对论,当两个致密星体近距离彼此绕旋时,该体系会产生引力辐射。辐射出的引力波带走能量,所以系统总能量会越来越少,轨道半径和周期也会变短。
泰勒和他的同行在之后的30年时间里面对PSR1913+16做了持续观测,观测结果精确地按广义相对论所预测的那样:周期变化率为每年减少76.5微秒,半长轴每年缩短3.5米。广义相对论甚至还可以预言这个双星系统将在3亿年后合并。这是人类第一次得到引力波存在的间接证据,是对广义相对论引力理论的一项重要验证。泰勒和赫尔斯因此荣获1993年诺贝尔物理学奖。到目前为止,类似的双中子星系统只已经发现了将近10个。但是此次发布会中的双黑洞系统却从来没被发现过,是首次。
在实验方面,第一个对直接探测引力波作伟大尝试的人是韦伯(Joseph Weber)。早在上个世纪50年代,他第一个充满远见地认识到,探测引力波并不是没有可能。从1957年到1959年,韦伯全身心投入在引力波探测方案的设计中。最终,韦伯选择了一根长2米,直径0.5米,重约1吨的圆柱形铝棒,其侧面指向引力波到来的方向。该类型探测器,被业内称为共振棒探测器:当引力波到来时,会交错挤压和拉伸铝棒两端,当引力波频率和铝棒设计频率一致时,铝棒会发生共振。贴在铝棒表面的晶片会产生相应的电压信号。共振棒探测器有很明显的局限性,比如它的共振频率是确定的,虽然我们可以通过改变共振棒的长度来调整共振频率。但是对于同一个探测器,只能探测其对应频率的引力波信号,如果引力波信号的频率不一致,那该探测器就无能为力。此外,共振棒探测器还有一个严重的局限性:引力波会产生时空畸变,探测器做的越长,引力波在该长度上的作用产生的变化量越大。韦伯的共振帮探测器只有2米,强度为1E-21的引力波在这个长度上的应变量(2E-21米)实在太小,对上世纪五六十年代的物理学家来说,探测如此之小的长度变化是几乎不可能的。虽然共振棒探测器没能最后找到引力波,但是韦伯开创了引力波实验科学的先河,在他之后,很多年轻且富有才华的物理学家投身于引力波实验科学中。
在韦伯设计建造共振棒的同时期,有部分物理学家认识到了共振棒的局限性,然后就有了前面提到的有基于迈克尔逊干涉仪原理的引力波激光干涉仪探测方案。它是由麻省理工学院的韦斯(Rainer Weiss)以及马里布休斯实验室的佛瓦德(Robert Forward)在70年代建成。到了70年代后期,这些干涉仪已经成为共振棒探测器的重要替代者。激光干涉仪对于共振棒的优势显而易见:首先,激光干涉仪可以探测一定频率范围的引力波信号;其次,激光干涉仪的臂长可以做的很长,比如地面引力波干涉仪的臂长一般在千米的量级,远远超过共振棒。
除过我们刚刚提到的aLIGO, 还有众多的其他引力波天文台。位于意大利比萨附近,臂长为 3千米的VIRGO;德国汉诺威臂长为600米的GEO;日本东京国家天文台臂长为300米的TAMA300。这些探测器曾在2002年至2011年期间共同进行观测,但并未探测到引力波。所以之后这些探测器就进行了重大升级,两个高新LIGO(升级版的LIGO)探测器于2015年开始作为灵敏度大幅提升的高新探测器网络中的先行者进行观测,而高新VIRGO(升级后的VIRGO)也将于2016年年底开始运行。日本的项目TAMA300进行了全面升级,将臂长增加到了3公里,改名为叫KAGRA,预计2018年运行。
因为在地面上很容易受到干扰,所以物理学家们也在向太空进军。欧洲的空间引力波项目eLISA(演化激光干涉空间天线)。eLISA将由三个相同的探测器构成为一个边长为五百万公里的等边三角形,同样使用激光干涉法来探测引力波。此项目已经欧洲空间局通过批准,正式立项,目前处于设计阶段,计划于2034年发射运行。作为先导项目,两颗测试卫星已经于2015年12月3日发射成功,目前正在调试之中。中国的科研人员,在积极参与目前的国际合作之外之外,也在筹建自己的引力波探测项目。
宇宙引力波源
(1)旋进(In-spiral)或者合并的致密星双星系统。比如中子星或者黑洞的双星系统。非常类似于发布会当中的系统。
(2)快速旋转的致密天体。这类天体会通过周期性的引力波辐射损失掉角动量,它的信号的强度会随着非对称的程度增加而增加。可能的候选体包括非对称的中子星之类的。
(3)随机的引力波背景。非常类似于我们通常熟知的宇宙背景辐射,这一类背景引力波,也通常叫做原初引力波,它是早期宇宙暴涨是的遗迹。2014年由加州理工、哈佛大学等几个大学的研究人员所组成的BICEP2团队曾宣称利用南极望远镜找到了原初引力波,但是后来证实为银河系尘埃影响的结果。原初引力波的探测将是对暴胀宇宙模型的直接验证,对于它的探测依旧在努力寻找之中。
(4)超新星或者伽马射线暴爆发。恒星爆发时非对称性动力学性质也会产生引力波。而直接探测到来自于这些天体的引力波,将是提供对这些天体最直接而且最内部的信息。
以上的天体都能够产生地面探测器所探测到的引力波信号(频率大约几到几百赫兹)。还有一类天体,也能够产生比较较强的引力波,只是产生的频率比较低而已(频率在0.01赫兹以下)。
(5)超大质量黑洞。在星系的中心,我们知道会有一个超大质量黑洞的存在。星系在演化的过程当中,会彼此合并,所以在某些星系中间,会有两个黑洞。非常类似于LIGO所探测到的双恒星级黑洞,这两个双黑洞在绕转和最终的合并的之时,也会产生很强的引力波。这种引力波可以利用空间探测器来探测。
看过“宇宙的引力波源”的人还看了: