初三一模数学试卷分析
对初三数学一模的试卷进行分析,做好复习准备吧。下面是学习啦小编收集整理初三一模数学的试卷分析以供大家学习参考。
初三一模数学试卷分析(一)
一、试卷总体情况:
1、基础部分(86分)
(1)相反数(2)科学记数法(3)圆心角与圆周角的关系(4)概率(5)相似(6)配方法(7)统计量(9)自变量取值范围(10)分解因式(11)解直角三角形的简单应用(13)实数计算(14)解不等式组(15)全等(16)方程组,代数式求值(17)一次函数与反比例函数(18)列方程解应用题(19)四边形计算(20)第一问切线证明(21)统计(23)第一问判别式(25)第一问求二次函数解析式。
2、中档、提高部分(34分)
(8)展开图(12)规律探索(19)第二问与圆有关的计算(22)阅读、操作问题
(23)第二、三问代数综合(24)几何综合(25)第二、三问代数几何综合题。
二、部分题目分析:
1、第8题,展开图问题(中考选择压轴题常考题),难度中,考查学生的空间想象能力,此题可采用退步法,使问题简化,三个面想不过来,你可以想两个面,之后看有无重叠即可,本题也可实验操作,但图形有些复杂,折起纸来有一定困难。
2、第12题,规律探究题,本题所考图形在中考或模拟中多次出现,同学们并不陌生,解题关键是代数与几何之间的相互转换。
3、第17、18、19题,都是模仿11年中考题出的,17注意分类讨论,18注意分式方程要检验,19没考常规梯形计算。
4、第20题,切线的证明实为弦切角逆定理模型,但为了降低难度,题中给画出了直径;第二问也是模仿中考题求了2条线段长度,但第一个线段长度实为降低求第二条的难度,并可以达到一定的区分度,本题为中等难题,但比11年中考简单。
5、第22题,本题为阅读理解类信息题,做这类题目注意一定要把信息读完了,再思考,然后照葫芦画瓢即可。本题在北京竞赛中考过,在市面上比较流行的培优类教辅《新思维》或《培优竞赛新方法》中的平移部分可以找到。
6、第23题,常规代数综合题,一句话“代数就行”。
7、第24题,中点相关几何综合题,10、11年海淀一模第25题皆是此类问题,本题图形的实质是增设中点法的外构中位线,进而极大的降低了难度,本类题在竞赛和中考中多次考察,08北京中考第25题就是此类问题(05大连中考改题),本题为08大连二模第26题改题。
8、第25题,代几综合,第一问送分,第二问割补法求面积,第3问可视为以代数为主的代几综合题(典型的大连题风格,本题为09大连中考第26题改题),注意代数和几何之间的转换计算即可。
小结:
本次海淀区一模题目和以往相比略显简单,因此同学们会有一个不错的成绩(相对期末考试),但且不可骄傲,对于大多数同学来说要保证简单题的准确率,提高中等题的速度,了解难题的基本套路。
初三一模数学试卷分析(二)
一、试卷中反映教与学的问题:
教的问题:
对学生解题方法与能力的培养有待进一步加强,增强解题方法指导性教学。
学生问题:
1、基础知识不扎实,基本概念、基本公式、基本性质、基本定理不熟,造成失分;
2、审题不清,导致严重失分;
3、解题过程不规范,不严谨,解题基本技能不熟练,基本思路不明确,造成失分;
4、数学思想方法不灵活,转化思想、分类讨论思想、数形结合思想等能力差,综合、灵活应用知识能力差造成失分。
二、试卷分析
这次试卷检测的范围主要是初三上学的知识点,难易也适度,比较能如实反映出学生的实际数学知识的掌握情况,而从试卷成绩来看,基本达到了预期目标,大致可分为两类:第一类是基础知识,通过选择、填空、计算、和画图题进行检测,第二类是综合应用,主要是考几何证明、应用实践和分类讨论等试题。
在基本知识中,选择、填空的情况基本较好。选择题失分情况最多的是第一题,学生容易犯粗心的错误,其次填空题错误的在地17题。
对于应用题,培养学生的读题能力很关键,自己读懂题意。分析题意在现在看来是一种不可或缺的能力,很多学生因为缺少这种能力而在自己明明会做的题上失分了,太可惜了。(试卷第22题就是一应用题,学生主要错误是由于题意没有理解导致错误;第25题学生因为看见题目太长,甚至连题目都没有看就没有去做了)
猜你感兴趣:
5.初一数学试卷分析