学习啦>学习方法>初中学习方法>初三学习方法>九年级数学>

初中数学重点知识点

妙纯分享

  数学体系的四大思维体系:数形结合、函数思想、分类讨论、方程思想。在学习初中数学知识过程中要做到已知量和未知量的有机结合,用已知数值通过函数的方式和方程的形式展现出来,在未知待定的情况下,通过分情况的方式加以讨论并解析出问题的不同情况的答案!小编整理了关于初中数学的重点,希望对大家有帮助!

  初中数学重点知识点第一部分

  1过两点有且只有一条直线

  2两点之间线段最短

  3同角或等角的补角相等

  4同角或等角的余角相等

  5过一点有且只有一条直线和已知直线垂直

  6直线外一点与直线上各点连接的所有线段中,垂线段最短

  7平行公理经过直线外一点,有且只有一条直线与这条直线平行

  8如果两条直线都和第三条直线平行,这两条直线也互相平行

  9同位角相等,两直线平行

  10内错角相等,两直线平行

  11同旁内角互补,两直线平行

  12两直线平行,同位角相等

  13两直线平行,内错角相等

  14两直线平行,同旁内角互补

  15定理三角形两边的和大于第三边

  16推论三角形两边的差小于第三边

  17三角形内角和定理三角形三个内角的和等于180°

  18推论1直角三角形的两个锐角互余

  19推论2三角形的一个外角等于和它不相邻的两个内角的和

  20推论3三角形的一个外角大于任何一个和它不相邻的内角

  21全等三角形的对应边、对应角相等

  22边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等

  23角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等

  24推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等

  25边边边公理(SSS)有三边对应相等的两个三角形全等

  26斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等

  27定理1在角的平分线上的点到这个角的两边的距离相等

  28定理2到一个角的两边的距离相同的点,在这个角的平分线上

  29角的平分线是到角的两边距离相等的所有点的集合

  30等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)

  初中数学重点知识点第二部分

  31推论1等腰三角形顶角的平分线平分底边并且垂直于底边

  32等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

  33推论3等边三角形的各角都相等,并且每一个角都等于60°

  34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

  35推论1三个角都相等的三角形是等边三角形

  36推论2有一个角等于60°的等腰三角形是等边三角形

  37在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

  38直角三角形斜边上的中线等于斜边上的一半

  39定理线段垂直平分线上的点和这条线段两个端点的距离相等

  40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

  41线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

  42定理1关于某条直线对称的两个图形是全等形

  43定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

  44定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

  45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

  46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2

  47勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形

  48定理四边形的内角和等于360°

  49四边形的外角和等于360°

  50多边形内角和定理n边形的内角的和等于(n-2)×180°

  51推论任意多边的外角和等于360°

  52平行四边形性质定理1平行四边形的对角相等

  53平行四边形性质定理2平行四边形的对边相等

  54推论夹在两条平行线间的平行线段相等

  55平行四边形性质定理3平行四边形的对角线互相平分

  56平行四边形判定定理1两组对角分别相等的四边形是平行四边形

  57平行四边形判定定理2两组对边分别相等的四边形是平行四边形

  58平行四边形判定定理3对角线互相平分的四边形是平行四边形

  59平行四边形判定定理4一组对边平行相等的四边形是平行四边形

  60矩形性质定理1矩形的四个角都是直角

  61矩形性质定理2矩形的对角线相等

  62矩形判定定理1有三个角是直角的四边形是矩形

  63矩形判定定理2对角线相等的平行四边形是矩形

  64菱形性质定理1菱形的四条边都相等

  65菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角

  66菱形面积=对角线乘积的一半,即S=(a×b)÷2

  67菱形判定定理1四边都相等的四边形是菱形

  68菱形判定定理2对角线互相垂直的平行四边形是菱形

  69正方形性质定理1正方形的四个角都是直角,四条边都相等

  初中数学重点知识点第三部分

  70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

  71定理1关于中心对称的两个图形是全等的

  72定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

  73逆定理如果两个图形的对应点连线都经过某一点,并且被这一

  点平分,那么这两个图形关于这一点对称

  74等腰梯形性质定理等腰梯形在同一底上的两个角相等

  75等腰梯形的两条对角线相等

  76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形

  77对角线相等的梯形是等腰梯形

  78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等

  79推论1经过梯形一腰的中点与底平行的直线,必平分另一腰

  80推论2经过三角形一边的中点与另一边平行的直线,必平分第三边

  81三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半

  82梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h

  83(1)比例的基本性质如果a:b=c:d,那么ad=bc,如果ad=bc,那么a:b=c:d

  84(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d

  85(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

  86平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例

  87推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

  88定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

  89平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例

  90定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

  91相似三角形判定定理1两角对应相等,两三角形相似(ASA)

  92直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

  93判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)

  94判定定理3三边对应成比例,两三角形相似(SSS)

  95定理如果一个直角三角形的斜边和一条直角边与另一个直角三

  角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

  96性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比

  97性质定理2相似三角形周长的比等于相似比

  98性质定理3相似三角形面积的比等于相似比的平方

  99任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值

  100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值

  101圆是定点的距离等于定长的点的集合

  102圆的内部可以看作是圆心的距离小于半径的点的集合

  103圆的外部可以看作是圆心的距离大于半径的点的集合

  104同圆或等圆的半径相等

  105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

  106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线

  107到已知角的两边距离相等的点的轨迹,是这个角的平分线

  108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线

  109定理不在同一直线上的三点确定一个圆。

  110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧


  看了“初中数学重点知识点”的人还看了:

1.初中数学知识点归纳

2.初中数学知识要点口诀总汇

3.2016初中数学知识点总结大全

4.初中数学基础知识点总结

5.初中数学圆的知识点归纳

    3160004