学习啦>学习方法>高中学习方法>高一学习方法>高一数学>

高一必修二数学公式知识总结

淑航分享

  在高一数学学习阶段,要熟记每一个数学公式,才能提高自己的学习水平。下面就让学习啦小编给大家分享一些高一必修二数学公式知识总结吧,希望能对你有帮助!

  高一必修二数学公式知识总结篇一

  公式一:

  设α为任意角,终边相同的角的同一三角函数的值相等:

  sin(2kπ+α)=sinα

  cos(2kπ+α)=cosα

  tan(2kπ+α)=tanα

  cot(2kπ+α)=cotα

  公式二:

  设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

  sin(π+α)=-sinα

  cos(π+α)=-cosα

  tan(π+α)=tanα

  cot(π+α)=cotα

  公式三:

  任意角α与 -α的三角函数值之间的关系:

  sin(-α)=-sinα

  cos(-α)=cosα

  tan(-α)=-tanα

  cot(-α)=-cotα

  公式四:

  利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

  sin(π-α)=sinα

  cos(π-α)=-cosα

  tan(π-α)=-tanα

  cot(π-α)=-cotα

  公式五:

  利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

  sin(2π-α)=-sinα

  cos(2π-α)=cosα

  tan(2π-α)=-tanα

  cot(2π-α)=-cotα

  公式六:

  π/2±α及3π/2±α与α的三角函数值之间的关系:

  sin(π/2+α)=cosα

  cos(π/2+α)=-sinα

  tan(π/2+α)=-cotα

  cot(π/2+α)=-tanα

  sin(π/2-α)=cosα

  cos(π/2-α)=sinα

  tan(π/2-α)=cotα

  cot(π/2-α)=tanα

  sin(3π/2+α)=-cosα

  cos(3π/2+α)=sinα

  tan(3π/2+α)=-cotα

  cot(3π/2+α)=-tanα

  sin(3π/2-α)=-cosα

  cos(3π/2-α)=-sinα

  tan(3π/2-α)=cotα

  cot(3π/2-α)=tanα

  规律总结

  上面这些诱导公式可以概括为:

  对于k·π/2±α(k∈Z)的个三角函数值,

  ①当k是偶数时,得到α的同名函数值,即函数名不改变;

  ②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.

  (奇变偶不变)

  然后在前面加上把α看成锐角时原函数值的符号。

  (符号看象限)

  例如:

  sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。

  当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。

  所以sin(2π-α)=-sinα

  上述的记忆口诀是:

  奇变偶不变,符号看象限。

  公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α

  所在象限的原三角函数值的符号可记忆。

  水平诱导名不变;符号看象限。

  高一必修二数学公式知识总结篇二

  同角三角函数基本关系

  ⒈同角三角函数的基本关系式

  倒数关系:

  tanα ·cotα=1

  sinα ·cscα=1

  cosα ·secα=1

  商的关系:

  sinα/cosα=tanα=secα/cscα

  cosα/sinα=cotα=cscα/secα

  平方关系:

  sin^2(α)+cos^2(α)=1

  1+tan^2(α)=sec^2(α)

  1+cot^2(α)=csc^2(α)

  同角三角函数关系六角形记忆法

  六角形记忆法:(参看图片或参考资料链接)

  构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。

  (1)倒数关系:对角线上两个函数互为倒数;

  (2)商数关系:六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。

  (主要是两条虚线两端的三角函数值的乘积)。由此,可得商数关系式。

  (3)平方关系:在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。

  两角和差公式

  ⒉两角和与差的三角函数公式

  sin(α+β)=sinαcosβ+cosαsinβ

  sin(α-β)=sinαcosβ-cosαsinβ

  cos(α+β)=cosαcosβ-sinαsinβ

  cos(α-β)=cosαcosβ+sinαsinβ

  高一必修二数学公式知识总结篇三

  三倍角公式推导

  附推导:

  tan3α=sin3α/cos3α

  =(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)

  =(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)

  上下同除以cos^3(α),得:

  tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))

  sin3α=sin(2α+α)=sin2αcosα+cos2αsinα

  =2sinαcos^2(α)+(1-2sin^2(α))sinα

  =2sinα-2sin^3(α)+sinα-2sin^2(α)

  =3sinα-4sin^3(α)

  cos3α=cos(2α+α)=cos2αcosα-sin2αsinα

  =(2cos^2(α)-1)cosα-2cosαsin^2(α)

  =2cos^3(α)-cosα+(2cosα-2cos^3(α))

  =4cos^3(α)-3cosα

  即

  sin3α=3sinα-4sin^3(α)

  cos3α=4cos^3(α)-3cosα


看了高一必修二数学公式知识总结的人还看:

1.高中数学必修2空间几何体知识点归纳总结

2.高三文科数学公式总结

3.高二数学必修3归纳总结

4.高一必修数学知识归纳

5.高二文科数学导数公式知识点归纳

6.高二数学知识点大全必修二

    471118