学习啦>学习方法>高中学习方法>高一学习方法>高一数学>

高一数学教材下册《向量的数量积》练习及解析(2)

凤婷分享

  二、填空题:(本大题共4小题,每小题6分,共24分,把正确答案填在题后的横线上.)

  7.(2010•江西)已知向量a,b满足|b|=2,a与b的夹角为60°,则b在a上的投影是________.

  解析:b在a上的投影是|b|cos〈a,b〉=2cos60°=1.

  答案:1

  8.(2010•浙江)已知平面向量α,β,|α|=1,|β|=2,α⊥(α-2β),则|2α+β|的值是________.

  解析:由于α⊥(α-2β),所以α•(α-2β)=|α|2-2α•β=0,故2α•β=1,所以|2α+β|=4|α|2+4α•β+|β|2=4+2+4=10.

  答案:10

  9.已知|a|=2,|b|=2,a与b的夹角为45°,要使λb-a与a垂直,则λ=________.

  解析:由λb-a与a垂直,(λb-a)•a=λa•b-a2=0,所以λ=2.

  答案:2

  10.在△ABC中,O为中线AM上的一个动点,若AM=2,则 )的最小值是________.

  解析:令| |=x且0≤x≤2,则| |=2-x.

  =-2(2-x)x=2(x2-2x)=2(x-1)2-2≥-2.

  ∴ 的最小值为-2.

  答案:-2

  三、解答题:(本大题共3小题,11、12题13分,13题14分,写出证明过程或推演步骤.)

  11.已知|a|=2,|b|=1,a与b的夹角为45°,求使向量(2a+λb)与(λa-3b)的夹角是锐角的λ的取值范围.

  解:由|a|=2,|b|=1,a与b的夹角为45°,

  则a•b=|a||b|cos45°=2×1×22=1.

  而(2a+λb)•(λa-3b)=2λa2-6a•b+λ2a•b-3λb2=λ2+λ-6.

  设向量(2a+λb)与(λa-3b)的夹角为θ,

  则cosθ=(2a+λb)•(λa-3b)|2a+λb||λa-3b|>0,且cosθ≠1,

  ∴(2a+λb)•(λa-3b)>0,∴λ2+λ-6>0,

  ∴λ>2或λ<-3.

  假设cosθ=1,则2a+λb=k(λa-3b)(k>0),

  ∴2=kλ,λ=-3k,解得k2=-23.

  故使向量2a+λb和λa-3b夹角为0°的λ不存在.

  所以当λ>2或λ<-3时,向量(2a+λb)与(λa-3b)的夹角是锐角.

  评析:由于两个非零向量a,b的夹角θ满足0°≤θ≤180°,所以用cosθ=a•b|a||b|去判断θ分五种情况:cosθ=1,θ=0°;cosθ=0,θ=90°;cosθ=-1,θ=180°;cosθ<0且cosθ≠-1,θ为钝角;cosθ>0且cosθ≠1,θ为锐角.

  12.设在平面上有两个向量a=(cosα,sinα)(0°≤α<360°),b=-12,32.

  (1)求证:向量a+b与a-b垂直;

  (2)当向量3a+b与a-3b的模相等时,求α的大小.

  解:(1)证明:因为(a+b)•(a-b)=|a|2-|b|2=(cos2α+sin2α)-14+34=0,故a+b与a-b垂直.

  (2)由|3a+b|=|a-3b|,两边平方得3|a|2+23a•b+|b|2=|a|2-23a•b+3|b|2,

  所以2(|a|2-|b|2)+43a•b=0,而|a|=|b|,所以a•b=0,则-12•cosα+32•sinα=0,

  即cos(α+60°)=0,

  ∴α+60°=k•180°+90°,

  即α=k•180°+30°,k∈Z,

  又0°≤α<360°,则α=30°或α=210°.

  13.已知向量a=(cos(-θ),sin(-θ)),b=cosπ2-θ,sinπ2-θ,

  (1)求证:a⊥b;

  (2)若存在不等于0的实数k和t,使x=a+(t2+3)b,y=-ka+tb满足x⊥y,试求此时k+t2t的最小值.

  解:(1)证明:∵a•b=cos(-θ)•cosπ2-θ+

  sin(-θ)•sinπ2-θ=sinθcosθ-sinθcosθ=0.

  ∴a⊥b.

  (2)由x⊥y,得x•y=0,

  即[a+(t2+3)b]•(-ka+tb)=0,

  ∴-ka2+(t3+3t)b2+[t-k(t2+3)]a•b=0,

  ∴-k|a|2+(t3+3t)|b|2=0.

  又|a|2=1,|b|2=1,∴-k+t3+3t=0,

  ∴k=t3+3t,

  ∴k+t2t=t3+t2+3tt=t2+t+3

  =t+122+114.

  故当t=-12时,k+t2t有最小值114.

高一数学教材下册《向量的数量积》练习及解析相关文章:

1.高一数学《平面向量的数量积》说课稿范文

2.高一数学平面向量知识点总结

3.高二数学平面向量的数量积知识点复习

4.高一上学期数学复习要点

2500892