学习啦>学习方法>高中学习方法>高三学习方法>高三数学>

2016高考数学公式

淑航分享

  掌握好数学的每一个公式,轻松迎接考试吧。下面是学习啦小编网络整理的2016高考数学公式以供大家学习。

  2016高考数学公式(一)

  等比数列公式

  如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示。

  (1)等比数列的通项公式是:An=A1×q^(n-1)

  若通项公式变形为an=a1/q*q^n(n∈N*),当q>0时,则可把an看作自变量n的函数,点(n,an)是曲线y=a1/q*q^x上的一群孤立的点。

  (2) 任意两项am,an的关系为an=am·q^(n-m)

  (3)从等比数列的定义、通项公式、前n项和公式可以推出: a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}

  (4)等比中项:aq·ap=ar^2,ar则为ap,aq等比中项。

  记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

  另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。

  性质:

  ①若 m、n、p、q∈N*,且m+n=p+q,则am·an=ap·aq;

  ②在等比数列中,依次每 k项之和仍成等比数列。

  “G是a、b的等比中项”“G^2=ab(G≠0)”。

  (5) 等比数列前n项之和Sn=A1(1-q^n)/(1-q)或Sn=(a1-an*q)/(1-q)(q≠1) Sn=n*a1 (q=1)

  在等比数列中,首项A1与公比q都不为零。

  注意:上述公式中A^n表示A的n次方。

  等比数列在生活中也是常常运用的。

  如:银行有一种支付利息的方式---复利。

  即把前一期的利息和本金加在一起算作本金,

  再计算下一期的利息,也就是人们通常说的利滚利。

  按照复利计算本利和的公式:本利和=本金*(1+利率)^存期。

  2016高考数学公式(二)

  等差数列

  (一)

  通项公式an=a1+(n-1)d 首项a1,公差d, an第n项数

  an=ak+(n-k)d ak为第k项数

  若a,A,b构成等差数列 则 A=(a+b)/2

  2.等差数列前n项和:

  设等差数列的前n项和为Sn

  即 Sn=a1+a2+...+an;

  那么 Sn=na1+n(n-1)d/2

  =dn^2(即n的2次方) /2+(a1-d/2)n

  还有以下的求和方法: 1,不完全归纳法 2 累加法 3 倒序相加法

  (二)

  通项公式 an=a1*q^(n-1)(即q的n-1次方) a1为首项,an为第n项

  an=a1*q^(n-1),am=a1*q^(m-1)

  则an/am=q^(n-m)

  (1)an=am*q^(n-m)

  (2)a,G,b 若构成等比中项,则G^2=ab (a,b,G不等于0)

  (3)若m+n=p+q 则 am×an=ap×aq

  2.等比数列前n项和

  设 a1,a2,a3...an构成等比数列

  前n项和Sn=a1+a2+a3...an

  Sn=a1+a1*q+a1*q^2+....a1*q^(n-2)+a1*q^(n-1)(这个公式虽然是最基本公式,但一部分题目中求前n项和是很难用下面那个公式推导的,这时可能要直接从基本公式推导过去,所以希望这个公式也要理解)

  Sn=a1(1-q^n)/(1-q)=(a1-an*q)/(1-q);

  注: q不等于1;

  Sn=na1 注:q=1

  求和一般有以下5个方法: 1,完全归纳法(即数学归纳法) 2 累乘法 3 错位相减法 4 倒序求和法 5 裂项相消法。

    457981