高中物理选修3-4复习资料总结
选修3-4是高中物理的重点内容,学生需要做好相关复习工作,下面是学习啦小编给大家带来的高中物理选修3-4复习资料,希望对你有帮助。
高中物理选修3-4复习资料(一)
1、机械振动:
物体(或物体的一部分)在某一中心位置两侧来回做往复运动,叫做机械振动。机械振动产生的条件是:
①回复力不为零;
②阻力很小。使振动物体回到平衡位置的力叫做回复力,回复力属于效果力,在具体问题中要注意分析什么力提供了回复力。
2、简谐振动:
在机械振动中最简单的一种理想化的振动。对简谐振动可以从两个方面进行定义或理解:
①物体在跟位移大小成正比,并且总是指向平衡位置的回复力作用下的振动,叫做简谐振动。
②物体的振动参量,随时间按正弦或余弦规律变化的振动,叫做简谐振动,
3、描述振动的物理量
研究振动除了要用到位移、速度、加速度、动能、势能等物理量以外,为适应振动特点还要引入一些新的物理量。
⑴位移x:由平衡位置指向振动质点所在位置的有向线段叫做位移。位移是矢量,其最大值等于振幅。
⑵振幅A:做机械振动的物体离开平衡位置的 最大距离叫做振幅,振幅是标量,表示振动的强弱。振幅越大表示振动的机械能越大,做简揩振动物体的振幅大小不影响简揩振动的周期和频率。
⑶周期T:振动物体完成一次余振动所经历的时间叫做周期。所谓全振动是指物体从某一位置开始计时,物体第一次以相同的速度方向回到初始位置,叫做完成了一次全振动。
⑷频率f:振动物体单位时间内完成全振动的次数。
⑸角频率ω:角频率也叫角速度,即圆周运动物体单位时间转过的弧度数。引入这个参量来描述振动的原因是人们在研究质点做匀速圆周运动的射影的运动规律时,发现质点射影做的是简谐振动。因此处理复杂的简谐振动问题时,可以将其转化为匀速圆周运动的射影进行处理,这种方法高考大纲不要求掌握。
周期、频率、角频率的关系是:
⑹相位:表示振动步调的物理量。
4、研究简谐振动规律的几个思路:
⑴用动力学方法研究,受力特征:回复力F =- kx;加速度,简谐振动是一种变加速运动。在平衡位置时速度最大,加速度为零;在最大位移处,速度为零,加速度最大。
⑵用运动学方法研究:简谐振动的速度、加速度、位移都随时间作正弦或余弦规律的变化,这种用正弦或余弦表示的公式法在高中阶段不要求学生掌握。
⑶用图象法研究:熟练掌握用位移时间图象来研究简谐振动有关特征是本章学习的重点之一。
⑷从能量角度进行研究:简谐振动过程,系统动能和势能相互转化,总机械能守恒,振动能量和振幅有关。
5、简谐运动的表达式:
6、简谐运动图象描述振动的物理量
(1)直接描述量:
①振幅A;②周期T;③任意时刻的位移t.
(2)间接描述量:
(3)从振动图象中的x分析有关物理量(v,a,F)
简谐运动的特点是周期性。在回复力的作用下,物体的运动在空间上有往复性,即在平衡位置附近做往复的变加速(或变减速)运动;
在时间上有周期性,即每经过一定时间,运动就要重复一次。我们能否利用振动图象来判断质点x,F,v,a的变化,它们变化的周期虽相等,但变化步调不同,只有真正理解振动图象的物理意义,才能进一步判断质点的运动情况。
小结:①简谐运动的图象是正弦或余弦曲线,与运动轨迹不同。②简谐运动图象反应了物体位移随时间变化的关系。③根据简谐运动图象可以知道物体的振幅、周期、任一时刻的位移。
高中物理选修3-4复习资料(二)
1、光的干涉
(1)产生稳定干涉的条件:只有两列光波的频率相同,位相差恒定,振动方向一致的相干光源,才能产生光的干涉。由两个普通独立光源发出的光,不可能具有相同的频率,更不可能存在固定的相差,因此,不能产生干涉现象。
(2)条纹宽度(或条纹间距) 相邻两条亮(暗)条纹的间距Δx为:
上式说明,两缝间距离越小、缝到屏的距离越大,光波的波长越大,条纹的宽度就越大。当实验装置一定,红光的条纹间距最大,紫光的条纹间距最小。这表明不同色光的波长不同,红光最长,紫光最短。
几个问题:
①在双缝干涉实验中,如果用红色滤光片遮住一个狭缝S1,再用绿滤光片遮住另一个狭缝S2,当用白光入射时,屏上是否会产生双缝干涉图样?
这时在屏上将会出现红光单缝衍射光矢量和绿光单缝衍射光矢量振动的叠加。由于红光和绿光的频率不同,因此它们在屏上叠加时不能产生干涉,此时屏上将出现混合色二单缝衍射图样。
②在双缝干涉实验中,如果遮闭其中一条缝,则在屏上出现的条纹有何变化?原来亮的地方会不会变暗?
如果遮住双缝其中的一条缝,在屏上将由双缝干涉条纹演变为单缝衍射条纹,与干涉条纹相比,这时单缝衍射条纹亮度要减弱,而且明纹的宽度要增大,但由于干涉是受衍射调制的,所以原来亮的地方不会变暗。
③双缝干涉的亮条纹或暗条纹是两列光波在光屏处叠加后加强或抵消而产生的,这是否违反了能量守恒定律?
暗条纹处的光能量几乎是零,表明两列光波叠加,彼此相互抵消,这是按照光的传播规律,暗条纹处是没有光能量传到该处的原因,不是光能量损耗了或转变成了其它形式的能量。同样,亮条纹处的光能量比较强,光能量增加,也不是光的干涉可以产生能量,而是按照波的传播规律到达该处的光能量比较集中。双缝干涉实验不违反能量守恒定律。
(3)薄膜干涉及其应用
(1)原理
①干涉法检查精密部件的表面
取一个透明的标准样板,放在待检查的部件表面并在一端垫一薄片,使样板的平面与被检查的平面间形成一个楔形空气膜,用单色光从上面照射,入射光从空气层的上下表面反射出两列光形成相干光,从反射光中就会看到干涉条纹,如图2-3甲所示。
如果被检表面是平的,那么空气层厚度相同的各点就位于一条直线上,产生的干涉条纹就是平行的(如图2-3乙);
如果观察到的干涉条纹如图2-3丙所示,A、B处的凹凸情况可以这样分析:由丙图知,P、Q两点位于同一条亮纹上,故甲图中与P、Q对应的位置空气层厚度相同。由于Q位于P的右方(即远离楔尖),如果被检表面是平的,Q处厚度应该比P处大,所以,只有当A处凹陷时才能使P与Q处深度相同。同理可以判断与M对应的B处为凸起。
②增透膜
是在透镜、棱镜等光学元件表面涂的一层氟化镁薄膜。当薄膜的两个表面上反射光的路程差等于半个波长时,反射回来的光抵消。从而增强了透射光的强度。显然增透膜的厚度应该等于光在该介质中波长的1/4。
由能量守恒可知,入射光总强度=反射光总强度+透射光总强度。光的强度由光的振幅决定。
当满足增透膜厚度时,两束反射光恰好实现波峰与波谷相叠加,实现干涉相消,使其合振幅接近于零,即反射光的总强度接近于零,从总效果上看,相当于光几乎不发生反射而透过薄膜,因而大大减少了光的反射损失,增强了透射光的强度。
增透膜只对人眼或感光胶片上最敏感的绿光起增透作用。当白光照到(垂直)增透膜上,绿光产生相消干涉,反射光中绿光的强度几乎是零。这时其他波长的光(如红光和紫光)并没有被完全抵消。因此,增透膜呈绿光的互补色——淡紫色。
光的衍射
⑴现象:
①单缝衍射
a.单色光入射单缝时,出现明暗相同不等距条纹,中间亮条纹较宽,较亮两边亮条纹较窄、较暗;
b.白光入射单缝时,出现彩色条纹。
②圆孔衍射:光入射微小的圆孔时,出现明暗相间不等距的圆形条纹
③泊松亮斑:光入射圆屏时,在园屏后的影区内有一亮斑
⑵光发生衍射的条件:障碍物或孔的尺寸与光波波长相差不多,甚至此光波波长还小时,出现明显的衍射现象
光的偏振
自然光:从普通光源直接发生的天然光是无数偏振光的无规则集合,所以直接观察时不能发现光强偏于一定方向。这种沿着各个方向振动的光波的强度都相同的光叫自然光;
太阳、电灯等普通光源发出的光,包含着在垂直于传播方向的平面内沿一切方向振动的光,而且沿着各个方向振动的光波强度都相同,这种光都是自然光。
自然光通过第一个偏振片P1(叫起偏器)后,相当于被一个“狭缝”卡了一下,只有振动方向跟“狭缝”方向平行的光波才能通过。
自然光通过偏振片Pl后虽然变成了偏振光,但由于自然光中沿各个方向振动的光波强度都相同,所以不论晶片转到什么方向,都会有相同强度的光透射过来。再通过第二个偏振片P2(叫检偏器)去观察就不同了;不论旋转哪个偏振片,两偏振片透振方向平行时,透射光最强,两偏振片的透振方向垂直时,透射光最弱。
光的偏振现象在技术中有很多应用.例如拍摄水下的景物或展览橱窗中的陈列品的照片时,由于水面或玻璃会反射出很强的反射光,使得水面下的景物和橱窗中的陈列品看不清楚,摄出的照片也不清楚。
如果在照相机镜头上加一个偏振片,使偏振片的透振方向与反射光的偏振方向垂直,就可以把这些反射光滤掉,而摄得清晰的照片;此外,还有立体电影、消除车灯眩光等等。
高中物理选修3-4复习资料(三)
(一)麦克斯韦电磁场理论
1、电磁场理论的核心之一:变化的磁场产生电场
在变化的磁场中所产生的电场的电场线是闭合的(涡旋电场)
理解:
①均匀变化的磁场产生稳定电场;
②非均匀变化的磁场产生变化电场。
2、电磁场理论的核心之二:变化的电场产生磁场
麦克斯韦假设:变化的电场就像导线中的电流一样,会在空间产生磁场,即变化的电场产生磁场
理解:
①均匀变化的电场产生稳定磁场;
②非均匀变化的电场产生变化磁场。
(二)电磁波
1、电磁场:如果在空间某区域中有周期性变化的电场,那么这个变化的电场就在它周围空间产生周期性变化的磁场;这个变化的磁场又在它周围空间产生新的周期性变化的电场,变化的电场和变化的磁场是相互联系着的,形成不可分割的统一体,这就是电磁场。
这个过程可以用下图表达:
2、电磁波:电磁场由发生区域向远处的传播就是电磁波。
3、电磁波的特点:
(1)电磁波是横波,电场强度E 和磁感应强度 B按正弦规律变化,二者相互垂直,均与波的传播方向垂。
(2)电磁波可以在真空中传播,速度和光速相同。
(3)电磁波具有波的特性。
(三)赫兹的电火花
赫兹观察到了电磁波的反射、折射、干涉、偏振和衍射等现象,他还测量出电磁波和光有相同的速度.这样赫兹证实了麦克斯韦关于光的电磁理论,赫兹在人类历史上首先捕捉到了电磁波。
看了<高中物理选修3-4复习资料总结>的人还看了: