学习啦>学习方法>初中学习方法>初二学习方法>八年级数学>

浙教版八年级上数学期末练习题

妙纯分享

  八年级数学期末考来临,愿你超水平发挥,马到成功。下面小编给大家分享一些浙教版八年级上数学期末练习题,大家快来跟小编一起看看吧。

  浙教版八年级上数学期末练习题

  一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)

  1.下面四个艺术字中,是轴对称图形的个数是( )

  A.1个 B.2个 C.3个 D.4个

  2.平面直角坐标系中,点A的坐标为(-2,1) ,则点A在( )

  A.第一象限 B.第二象限 C.第三象限 D.第四象限

  3.如图,两个三角形全等,则∠ 的度数是( )

  A.72° B.60 ° C.58° D.50°

  4.如图,数轴上点A对应的数是0,点B对应的数是1,BC⊥AB,垂足为B,且BC=1,以A为圆心,AC为半径画弧,交数轴于点D,则点D表示的数为( )

  A.1.4 B. C.1.5 D.2

  5.如果函数 (b为常数)与函数 的图像的交点坐标是(2,0),那么关于x、y的二元一次方程组x-y=b2x+y=4的解是( )

  A.x=2,y=0.

  B.x=0,y=2.

  C. , .

  D. , .

  6.如图,在△ABC中,∠ACB=90°,D是AB中点,连接CD.若AB=10,则CD的长为( )

  A.5 B.6 C.7 D.8

  7.如图,直线 与直线 的交点坐标为(3,-1),关于x的不等式 的解集为( )

  A. B. C. D.

  8.向一个容器内匀速地注水,最后把容器注满.在注水过程中,水面高度h随时间t的变化规律如图像所示.这个容器的形状可能是下图中的( )

  A. B. C. D.

  二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)

  9.在实数π、 、 、0.303003…(相邻两个3之间依次多一个0)中,无理数有 个.

  10.平面直角坐标系中,将点A(1,-2)向上平移1个单位长度后与点B重合,则点B的坐标是

  ( , ).

  11.用四舍五入法对9.2345取近似数为 .(精确到0.01)

  12.平面直角坐标系中,点(2,3)关于y轴对称的点的坐标为( , ).

  13.如图,已知∠ACD=∠BCE,AC=DC,如果要得到△ACB≌△DCE,那么还需要添加的条件是

  .(填写一个即可,不得添加辅助线和字母)

  14.如图,在△ABC中,AB=AC,D为AB上一点,AD=CD,若∠ACD=40°,则∠B= °.

  15.如图,在△ABC中,AB=AC=13,BC=10,D为BC上一点,若BD=5,则AD的长 .

  16.如图,在Rt△ABC中,∠A=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.若DC=2,AD=1,则BE的长为 .

  17.已知y是x的一次函数,函数y与自变量x的部分对应值如表,

  x … -2 -1 0 1 2 …

  y … 10 8 6 4 2 …

  点(x1,y1),(x2,y2)在该函数的图像上.若x1 x2,则y1 y2.

  18.老师让同学们举一个y是x的函数的例子,同学们分别用表格、图像、函数表达式列举了如下4个x、y之间的关系:

  气温x 1 2 0 1

  日期y 1 2 3 4

  ①

  ②

  ③

  y=kx+b ④

  y=x

  其中y一定是x的函数的是 .(填写所有正确的序号)

  三、解答题(本大题共9小题,共64分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)

  19.(4分)计算: .

  20.(8分)求下面各式中的x:

  (1) ; (2) .

  21.(7分)如图,在△ABC与△FDE中,点D在AB上,点B在DF上,∠C=∠E,AC∥FE,AD=FB.

  求证:△ABC≌△FDE.

  22.(8分)如图,在7×7网格中,每个小正方形的边长都为1.

  (1)建立适当的平面直角坐标系后,若点A(3,4)、C(4,2),则点B的坐标为 ;

  (2)图中格点△ABC的面积为 ;

  (3)判断格点△ABC的形状,并说明理由.

  23.(8分)已知一次函数 ,完成下列问题:

  (1)求此函数图像与x轴、y轴的交点坐标;

  (2)画出此函数的图像;观察图像,当 时,x的取值范围是 ▲ ;

  (3)平移一次函数 的图像后经过点(-3,1),求平移后的函数表达式.

  24.(7分)小红驾车从甲地到乙地,她出发第x h时距离乙地y km,已知小红驾车中途休息了1小时,图中的折线表示她在整个驾车过程中y与x之间的函数关系.

  (1)B点的坐标为( , );

  (2)求线段AB所表示的y与x之间的函数表达式;

  (3)小红休息结束后,以60km/h的速度行驶,则点D表示的实际意义是 .

  25.(7分)如图,已知△ABC与△ADE为等边三角形,D为BC延长线上的一点.

  (1)求证:△ABD≌△ACE;

  (2)求证:CE平分∠ACD.

  26.(7分)建立一次函数关系解决问题:甲、乙两校为了绿化校园,甲校计划购买A种树苗,A种树苗每棵24元;乙校计划购买B种树苗,B种树苗每棵18元.两校共购买了35棵树苗.若购进B种树苗的数量少于A种树苗的数量,请给出一种两校总费用最少的方案,并求出该方案所需的总费用.

  27.(8分)如图①,四边形OACB为长方形,A(-6,0),B(0,4),直线l为函数 的图像.

  (1)点C的坐标为 ;

  (2)若点P在直线l上,△APB为等腰直角三角形,∠APB=90°,求点P的坐标;

  小明的思考过程如下:

  第一步:添加辅助线,如图②,过点P作MN∥x轴,与y轴交于点N,与AC的延长线交于点M;

  第二步:证明△MPA≌△NBP;

  第三步:设NB=m,列出关于m的方程,进而求得点P的坐标.

  请你根据小明的思考过程,写出第二步和第三步的完整解答过程;

  (3)若点P在直线l上,点Q在线段AC上(不与点A重合),△QPB为等腰直角三角形,直接写出点P的坐标.

  浙教版八年级上数学期末练习题参考答案

  一、选择题(本大题共8小题,每小题2分,共16分)

  题号 1 2 3 4 5 6 7 8

  答案 A B D B A A D C

  二、填空题(本大题共10小题,每小题2分,共20分)

  9.3 10.1,-1 11.9.23 2.-2,3 13.∠A=∠D或∠B=∠E或BC=EC

  14.70 15.12 16. 17. 18.④

  三、解答题(本大题共9小题,共64分)

  19.(4分)

  解:原式 .(4分)

  20.(8分)

  (1)解: 或 ;(4分)

  (2)解: ,∴ .(8分)

  21.(7分)

  证:∵AC∥FE,∴∠A=∠F,(2分)

  ∵AD=FB,∴AD+DB=FB+DB,即AB=FD,(4分)

  在△ABC和△FDE中∠C=∠E∠A=∠F AB=FD,

  ∴△ABC≌△FDE(AAS). (7分)

  22.(8分)

  (1)解:点B的坐标为(0,0);(2分)

  (2)解:图中格点△ABC的面积为5;(4分)

  (3)解:格点△ABC是直角三角形.

  证明:由勾股定理可得:AB2=32+42=25,BC2=42+22=20,AC2=22+12=5,

  ∴BC2+AC2=20+5=25,AB2=25,

  ∴BC2+AC2=AB2,

  ∴△ABC是直角三角形.(8分)

  23.(8分)

  (1)解:当 时 ,

  ∴函数 的图像与y轴的交点坐标为(0,4);(2分)

  当 时, ,解得: ,

  ∴函数 的图像与x轴的交点坐标(2,0).(4分)

  (2)解:图像略;(6分)

  观察图像,当 时,x的取值范围是 .(7分)

  (3)解:设平移后的函数表达式为 ,将(-3,1)代入得: ,

  ∴ ,∴ .

  答:平移后的直线函数表达式为: .(8分)

  24.(7分)

  (1)解:( 3 , 120 );(2分)

  (2)解:设y与x之间的函数表达式为y=kx+b.

  根据题意,当x=0时,y=420;当x=3时,y=120.

  ∴420=0k+b,120=3k+b.解得k 100,b 420.

  ∴y与x之间的函数表达式为 .(6分)

  (3)解:小红出发第6 h时距离乙地0 km,即小红到达乙地.(7分)

  25.(7分)

  (1)证:∵△ABC为等边三角形,△ADE为等边三角形,

  ∴AB=AC,AD=AE,∠DAE=∠BAC=∠ACB=∠B=60°,

  ∵∠DAE=∠BAC,

  ∴∠DAE+∠CAD =∠BAC+∠CAD,

  ∴∠BAD=∠CAE,

  在△ABD和△ACE中AB=AC∠BAD=∠CAE AD =AE,

  ∴△ABD≌△ACE(SAS);(4分)

  (2)证:∵△ABD≌△ACE,

  ∴∠ACE=∠B=60°,

  ∵∠ACB=∠ACE=60°,

  ∴∠ECD=180°-∠ACE-∠ACB =180°-60°-60°=60°,

  ∴∠ACE=∠DCE=60°,

  ∴CE平分∠ACD.(7分)

  26.(7分)

  解:设甲校购进x棵A种树苗,两校所需要的总费用为w元.

  根据题意得: (4分)

  ∵ ,∴ 且为整数,

  在一次函数 中,∵ ,∴w随x的增大而增大,

  ∴当 时w有最小值,最小值为738,

  此时 .

  答:甲校购买A种树苗18棵,乙校购买B种树苗17棵,所需的总费用最少,最少为738元.(7分)

  27.(8分)

  (1)解:点C的坐标为(-6,4);(2分)

  (2)解:根据题意得:∠AMP=∠PNB=90°,

  ∵△APB为等腰直角三角形,∴AP=BP,∠APB=90°,

  ∵∠APB=∠AMP=90°,∴∠NPB+∠MPA=∠MPA+∠MAP=90°,

  ∴∠NPB=∠MPA,

  在△MPA和△NBP中∠MAP=∠NPB∠AMP=∠PNB PA=BP,

  ∴△MPA≌△NBP(AAS),∴AM=PN,MP=NB,

  设NB ,则MP ,PN MN MP ,AM ,

  ∵AM=PN,∴ ,(4分)

  解得: ,

  ∴点P的坐标为(-5,5);(6分)

  (3)解:设点Q的坐标为(-6,q), ,分3种情况讨论:

  ①当∠PBQ=90°时,如图1,过点P作PM⊥y轴于点M,点Q作QN⊥y轴于点N,

  易证△PMB≌△BNQ,∴MB=NQ=6,PM=BN= ,∴P( ,10),

  若点P在y轴右边,则其坐标为( , ),分别将这两个点代入 ,

  解得 和 ,因为 ,所以这两个点不合题意,舍去;

  ②当∠BPQ=90°时,

  若点P在BQ上方,即为(2)的情况,此时点Q与点A重合,由于题设中规定点Q不与点A重合,故此种情况舍去;

  若点P在BQ下方,如图2,过点P作PM⊥AC于点M,作PN⊥y轴于点N,

  设BN ,易证△PMQ≌△BNP,∴PM BN ,∴PN ,

  ∴P( , ),代入 ,解得 ,符合题意,

  此时点P的坐标为(-3,1);

  ③当∠PQB=90°时,如图3,过点Q作QN⊥y轴于点N,过点P 作PM∥y轴,过点Q作QM∥x轴,PM、QM相交于点M,设BN ,易证△PMQ≌△QNB,

  ∴PM QN ,MQ NB ,∴P( , ),代入 ,

  解得: ,符合题意,此时点P的坐标为(-7,9);

  若点P在BQ下方,则其坐标为( , ),代入 ,

  解得: ,不合题意,舍去.

  综上所述,点P的坐标为(-3,1)或(-7,9).(8分)

  看了“浙教版八年级上数学期末练习题”的人还看了:

1.浙教版八年级上册数学期末试卷

2.浙教版八年级上册数学期末练习

3.人教版八年级上数学期末试题

4.人教版八年级上册数学期末试卷

5.人教版八年级上数学期末试卷及答案

    2660231