大学高数学习心得体会精选(2)
大学高数学习心得体会篇三
数学学习方法
●全面复习,把书读薄
从历年试卷的内容分布上可以看出,凡是考试大纲中提及的内容,都可能考到,甚至某些不太重要的内容,在某一年可以在大题中出现,如98年数学一中,不但第三题是一道纯粹的解析几何题,而且还有两道题是与线性代数结合考了解析几何的内容,可见,猜题的复习方法是靠不住的,而应当参照考试大纲,全面息,不留遗漏.
全面复习不是生记硬背所有的知识,相反,是要抓住问题的实质和各内容,各方法的本质联系,把要记的东西缩小到最小程度,(要努力使自已理解所学知识,多抓住问题的联系,少记一些死知识),而且,不记则已,记住了就要牢靠,事实证明,有些记忆是终生不忘的,而其它的知识又可以在记住基本知识的基础上,运用它们的联系而得到.这就是全面复习的含义.
●突出重点,精益求精
在考试大纲的要求中,对内容有理解,了解,知道三个层次的要求;对方法有掌,会(能)两个层次的要求,一般地说,要求理解的内容,要求掌握的方法,是考试的重点.在历年考试中,这方面考题出现的概率较大;在同一份试卷中,这方面试题所占有的分数也较多."猜题"的人,往往要在这方面下功夫.一般说来,也确能猜出几分来.但遇到综合题,这些题在主要内容中含有次要内容.这时,"猜题"便行不通了.我们讲的突出重点,不仅要在主要内容和方法上多下功夫,更重要的是要去寻找重点内容与次要内容间的联系,以主带资,用重点内容担挈整个内容.主要内容理解透了,其它的内容和方法迎刃而解.即抓出主要内容不是放弃次要内容而孤立主要内容,而是从分析各内容的联系,从比较中自然地突出主要内容.如微分中值定理,有罗尔定理,拉格朗日定理,柯西定理和泰勒公式.由于罗尔定理是拉格朗日定理的特殊情况,而柯西定理和泰勒公式又是拉格朗日定理的推广.比较这些关系,便自然得到拉格朗日定理是核心,这这个定理搞深搞透,并从联系中掌握好其它几个定理,而在考试大纲中,罗尔定理与拉格朗日定理都是要求理解的内容,都是考试重点,我们更突出拉氏定理,可谓是精益求精.
●基本训练 反复进行
学习数学,要做一定数量的题,把基本功练熟练透,但我们不主张"题海"战术,而是提倡精练,即反复做一些典型的题,做致电一题多解,一题多变.要训练抽象思维能力,对些基本定理的证明,基本公式的推导,以及一些基本练习题,要作到不用书写,就象棋手下"盲棋"一样,只需用脑子默想,即能得到下确答案.这就是我们在前言中提到的,在20分钟内完成10道客观题.其中有些是不用动笔,一眼就能乍出答案的题,这样才叫训练有素,"熟能生巧",基本功扎实的人,遇到难题办法也多,不易被难倒.相反,作练习时,眼高手低,总找难题作,结果,上了考场,遇到与自己曾经作过的类似的题目都有可能不会;不少考生把会作的题算错了,归为粗心大意,确实,人会有粗心的,但基本功扎实的人,出了错立即会发现,很少会"粗心"地出错.
高等数学是高等工科院校的重要基础课程。但对于如何学好这门课程。有些同学却是百展莫愁,头痛不已。而高数的学习、掌握和运用是后序课程的基础和保障,学不好高数,对于三大力学,还有结构设计原理来说,是不可能学好的。
数学是一门深奥而又有兴趣的课程。如果增加对这门课程的自信心,不要畏惧它。你会很容易接受这门课,你也会发觉其实这门课程并不难,这对于学好数学是一个非常必要的条件。
多想多做是学好数学的关键。多想是根本,多做是基础,多做是为了熟能生巧,是为了真正应用,是学好数学的前提条件。而多想充分发挥联想是学好数学的根本条件。学数学要知道举一反三,当老师讲到某一点或某一类型的问题时,你的思路就应拓展开来,不应仅仅局限于这一点或这一类型的问题,而应该把前面所学的知识点结合起来,想想如果你碰到这种题目你会怎么办?假如以后碰到这种类型的题目你又会怎么样?其实数学是个活学问也是个死学问。正所谓万变不离其宗。所有的题目都是所学过的公式和方法稍微转变一下过来的。对于像我这样自学的人来说,更需要多做、多想。这样才能加深理解,运用自如。
现在懂了,以后又不会做了。数学必须要做题,对于数学的题目要学会分析,不要忽视每一个已知条件,发现一个已知条件要联想到相关的公式,而如何能充分的灵活的运用公式。这就是多做能产生的效果。
学好数学,学懂数学,主要的是“通”,而如何能“通”,这就是日积月累的多想多做,只要您通过勤学苦练,坚持不懈的努力,您一定会体会到高等数学没什么可怕的。
猜你感兴趣:
1.高等数学怎么学好
4.数学分析心得体会