考研数学高分刷题的技巧有哪些
数学在考研当中占的分值是最大的。数学想要拿高分难吗?掌握好的高分刷题技巧就好了。下面就是学习啦小编给大家整理的考研数学高分刷题的技巧,希望对你有用!
考研数学高分刷题的技巧
1.代入法
也就是说将备选的一个答案用具体的数字代入,如果与假设条件或众所周知的事实发生矛盾则予以否定。
2.演算法
它适用于题干中给出的条件是解析式子。
3.图形法
它适用于题干中给出的函数具有某种特性,例如奇偶性、周期性或者给出的事件是两个事件的情形,用图示法做就显得格外简单。
4.排除法
排除了三个,第四个就是正确的答案,这种方法适用于题干中给出的函数是抽象函的情况。
5.反推法
所谓逆推法就是假定被选的四个答案中某一个正确,然后做反推,如果得到的结果与题设条件或尽人皆知的正确结果矛盾,则否定这个备选答案。
(二)大题
接下来提供给大家几个大题的答题技巧,大家认真领会方法,要做到活学活用。
6.踩点得分
对于同一道题目,有的人解决得多,有的人解决得少。为了区分这种情况,阅卷评分办法是懂多少知识就给多少分,这种方法我们叫它"踩点给分".
鉴于这一情况,考试中对于难度较大的题目采用一定的策略,其基本精神就是会做的题目力求不失分,部分理解的题目力争多得分。对于会做的题目,要解决"会而不对,对而不全"这个老大难问题。
有的考生答案虽然对,但中间有逻辑缺陷或概念错误,或缺少关键步骤。因此,会做的题目要特别注意表达的准确、考虑的周密、书写的规范、语言的科学,防止被"分段扣点分"。
对于考生会做的题目,阅卷老师则更注意找其中的合理成分,分段给点分,所以"做不出来的题目得一二分易,做得出来的题目得满分难"。对绝大多数考生来说,更为重要的是如何从拿不下来的题目中得点分。有什么样的解题策略,就有什么样的得分策略。其实你要做的是认认真真把你解题的真实过程原原本本写出来,就是最好的得分技巧。
7.大题拿小分
如果遇到一个很困难的问题,确实啃不动,一个聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步,尚未成功不等于失败。
特别是那些解题层次明显的题目,或者是已经程序化了的方法,每进行一步得分点的演算都可以得分,最后结论虽然未得出,但分数却已过半,这叫"大题拿小分",确实是个好主意。
卡壳处先留白,以后推前:解题过程卡在某一过渡环节上是常见的。这时,我们可以先承认中间结论,往后推,看能否得到结论。如果不能,说明这个途径不对,立即改变方向;如果能得出预期结论,就回过头来,集中力量攻克这一"卡壳处"。
由于考试时间的限制,"卡壳处"的攻克来不及了,那么可以把前面的写下来,再写出"证实某步之后,继续有……"一直做到底,这就是跳步解答。也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面,"事实上,某步可证明或演算如下",以保持卷面的工整。若题目有两问,第一问想不出来,可把第一问作"已知","先做第二问",这也是跳步解答。
8.以退求进
"以退求进"是一个重要的解题策略。如果你不能解决所提出的问题,那么,你可以从一般退到特殊,从抽象退到具体,从复杂退到简单,从整体退到部分,从较强的结论退到较弱的结论。总之,退到一个你能够解决的问题。
为了不产生"以偏概全"的误解,应开门见山写上"本题分几种情况"。这样,还会为寻找正确的、一般性的解法提供有意义的启发。这个技巧需要同学们做题做到一定境界来体会,如果可以做到这一步,那么什么难题都不是难题了。
考研数学得高分的三大秘籍
一、深刻理解基本概念与理论
概念是事物的本质特征,有些概念的考查几乎是每年必考的,如导数的概念,不仅仅是利用导数概念进行计算,有时还需要理解导数概念的内涵与外延,这也是我们做题的一些关键,如导数的等价定义、导数的几何意义、导数与可微、连续的关系等等。有些基本理论,如洛必达法则求不定式极限,几乎是每年必考的,对于洛必达法则的内容,以及洛必达法则如何运用,运用时需要注意一些什么条件,这都是我们要搞明白的。对于概念和理论一定要理解到位,这些是我们做题时的灵魂,缺少了它们,做题时你就会觉得毫无头绪。
二、掌握基本方法,灵活运用解题方法
方法是解题过程中的框架,只有熟悉基本方法,做题时才能以不变应万变。如求函数的极值是导数应用中一类常考的题型,求解的步骤一般如下:求函数的定义域、求函数的导数、找出函数的驻点及不可导点、利用判断极值的第一充分条件进行验证,看看驻点和不可导哪些点满足左右两边单调性相反。此种类型的题目以解答题和选择题的形式在历年真题中都考过。此外还有,比如交换积分次序、改变坐标系等等都属于基本方法的考查,有些题目甚至都不需要计算就可以找出答案。对于基本方法要求灵活应用,不能死记硬背。
三、切忌盲目做练习题
数学在复习过程中,做题肯定是少不了的,但是同学们做题时一定要把准方向,不能做偏题、怪题和难题。在考试试卷中,至少有70%的题目是基础题,也就是难度在0.3-0.8之间。考试中不会考太难的题目。所以大家在复习过程中不要研究太难的题目,没太大的必要。多做做基础类的题目,后期练习一下带有综合性的基础类题目即可。复习时以真题的难度为导向进行复习即可。
考研数学高分做题的五个原则
一、大题拿小分
有的大题难度比较大,确实啃不动。一个聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步。尚未成功不等于失败,特别是那些解题层次明显的题目,或者是已经程序化了的方法,每进行一步得分点的演算都可以得分。最后结论虽然未得出,但分数却已过半。
二、从后往前推
考生在解题过程中卡在某一步是很常见,这时可以换一种思路,也许就会柳暗花明又一村。同学们可以把卡壳处空下来,先承认中间结论,再往后推,看能否得到结论。如果不能,说明这个途径不对,立即改变方向;如果能得出预期结论,就回过头来,集中力量攻克这一“卡壳处”。
三、踩点得分
对于同一道题目,有的人理解得深,有的人理解得浅,有的人解答得多,有的人解答得少。为了区分这种情况,阅卷评分办法是懂多少知识就给多少分。也叫踩点给分,即踩上知识点就得分,踩得多就多得分。因此,对于难度较大的题目可以采用这一策略,其基本精神就是会做的题目力求不失分,部分理解的题目力争多得分。因此,会做的题目要特别注意表达准确、逻辑清晰、书写规范、语言严谨,防止被“分段扣点分”。
四、以退求进
以退求进是一种重要的解题策略,也是做题的最高境界。如果你不能解决所提出的问题,那么可以从一般退到特殊,从抽象退到具体,从复杂退到简单,从整体退到部分,从较强的结论退到较弱的结论。总之,退到一个能够解决的问题。为了不产生“以偏概全”的误解,应开门见山写上“本题分几种情况”。这样,还会为寻找正确的、一般性的解法提供有意义的启发。这个技巧需要同学们做题做到一定境界来体会,如果可以做到这一步,那么什么难题都不是难题了。
五、灵活应对
由于考试时间的限制,“卡壳处”来不及攻克了,那么可以把前面的写下来,再写出“证实某步之后,继续有……”一直做到底,这就是跳步解答。也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面,“事实上,某步可证明或演算如下”,以保持卷面的工整。若题目有两问,第一问想不出来,可把第一问作“已知”,“先做第二问”,这也是跳步解答。
猜你喜欢: