高考数学蒙题有哪些好的技巧
对于高三生来说,数学无疑是最难的了,根据这种情况,掌握蒙题猜题的技巧,能有效提高高考的数学成绩哦。下面是小编分享的高考数学的蒙题技巧,一起来看看吧。
高考数学的蒙题技巧
高考数学字母算式求结果,极值大法直接代入
举例:等差数列{an}前n项和为sn,且a1大于0,若存在自然数m≥3,使sm=am,当n大于m时,sn与an的大小关系为:
a、snand、sn≥an
极值代入:
假设m=3,n=4,a1+a2+a3=s3=a3,那么就有a1+a2=0,也就是互为相反数,并且a1>0,这个再来一个特殊值,a1=1,那么公差就等于-1,那么这个数列就是1,-1,-3……
数学填空题:慎重再慎重在数学的主观题当中,填空题并不像后面的大题,要求给出具体的解题步骤,它只要求考生给出一个最后的答案。这就要求考生在答题时更加慎重,按部就班来进行解题。
高考数学大题:步骤需明确在大题(计算题和证明题)阅卷过程中,一般是过程分和结论分分开给的。因此考生在答题时还是应该将步骤写明确,这样不但能够获得步骤分,同时也利于自己后来的检查。否则就跟填空题一样,答案一错就没有分了。
1、通过验证,通过带入的方法,正确率最起码可以提高50%,甚至有的是全部作对呢。
2、高考数学蒙提技巧是大型考试还是有概率的,基本上按照10个选择题,肯定出现abcd各两个,另外的2个题目随机挑选,所以可以根据你做对的一些题目去蒙不会的,或者没有任何把握的。
3、题目告诉我们偶函数吧,我们可以直接拿y=x^2或者y=-x^2或者y=cosx来求解,但是可能题目有几个限制条件的话,一定要要符合题目的条件才可以,这样的话有一些晦涩难懂的高考数学题目就可以有思路去做了,举一反三。
对于高考数学的填空题,小编就没有办法了。如果学生实在不会刻意从0、-1、1这里面选,有百分之五十的机会可以答对一个。另外只靠蒙题是不对的,学生么也要多懂一些数学的知识,才能在高考数学中发挥的更好。
高考数学的做题思路
特殊与一般的思想
用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,我们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求主观题的求解策略,也同样精彩。
极限思想解题步骤
极限思想解决问题的一般步骤为:
(1)对于所求的未知量,先设法构思一个与它有关的变量;
(2)确认这变量通过无限过程的结果就是所求的未知量;
(3)构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。
分类讨论思想
我们常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。引起分类讨论的原因很多,数学概念本身具有多种情形,数学运算法则、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。在分类讨论解题时,要做到标准统一,不重不漏。
高考数学提高成绩的方法
1.切忌眼高手低
"眼高手低"是很多考生在复习数学时易犯的错误,很多考生对基础性的东西不屑一顾,认为这些内容很简单,用不着下劲复习,还有的考生只是"看",认为看懂就行了,很少下笔去做题,结果在最后的考试中眼熟手生,难以取得好的成绩。所以,在复习数学时一定要脚踏实地,一步一个脚印,就像下象棋,要取敌方老帅,就要老老实实战败所有兵卒,稳扎稳打,步步为营,这样的话,才能以不变应万变,在最后的实考中占据主动!
2.基础是提高的前提
基础的重要性已不言而喻,但是只注重基础,也是不行的。太注重基础,就会拘泥于书本,难以适应考研试题。打好基础的目的就是为了提高。但太重提高就会基础不牢,导致头重脚轻,力不从心。考生要明白基础与提高的辩证关系,根据自身情况合理安排复习进度,处理好打基础和提高能力两者的关系。一般来说,基础与提高是交叉和分段进行的,在一个时期的某一个阶段以基础为主,基础扎实了,再行提高。然后又进入了另一个阶段,同样还要先扎实基础再提高水平,如此反复循环。考生在这个过程中容易遇到这样的问题,就是感觉自己经过基础复习或一段时间的提高后几乎不再有所进步,甚至感到越学越退步,碰到这种情况,考生千万不要气馁,要坚信自己的能力,只要复习方法没有问题,就应该坚持下去。虽然表面上感到没有进步,但实际水平其实已经在不知不觉中提高了,因为在这个时期考生已经认识到了自己的不足,正处于调整和进步中。这个时候需要的就是考生的意志力,考研本来就是一场意志力的比赛,不仅需要丰富的知识和较高的能力,更要有坚强的意志力。只要坚持下去,就有成功的希望。
3.按题型分类进行
解题训练最好按题型进行分类复习,对于任何一个同学而言,都可能有自己很擅长的某些类型的题,相反的,也有一些不太熟悉或者不会做的题型,这在复习的过程中也当有所侧重。例如复习大全当中的典型例题解析部分,就对各个章节的题目都进行了细致划分,且在题目解答部分给出一题多解的多种解题方法,极大程度拓宽同学们的思路,掌握多种解题方法和要领。第一遍复习的时候,需要认真研究各种题型的求解思路和方法,做到心中有数,同时对自己的强项和薄弱环节有清楚的认识,第二遍复习的时候就可以有针对性地加强自己不擅长的题型的练习了,经过这样两边的系统梳理,相信解题能力一定会有飞跃性的提高。
4.不可忽视例题
考生在备考时还要多做例题,而不仅仅是练习题。做例题时应遵照下面的方法,也就是在看第一遍之前一定要遮住答案,自己先认真做;无论做出与否都要把自己的思路详记于空白处,尤其是做不出的,一定把自己真实的思考方式记录在案,留待日后分析,而不是对了答案就万事大吉,这样做可以迅速的找到做题的感觉。总之,考生在做题目时,要养成良好的做题习惯,做一个"有心人",认真地将遇到的解答中好的或者陌生的解题思路以及自己的思考记录下来,平时翻看,久而久之,自己的解题能力就会有所提高。
对于那些具有很强的典型性、灵活性、启发性和综合性的题,要特别注重解题思路和技巧的培养。数学试题千变万化,其知识结构却基本相同,题型也相对固定,往往存在明显的解题套路,熟练掌握后既能提高解题的针对性,又能提高解题速度和正确率。
5.不要为做题而做题
当然,一味的靠做题来提高数学能力也是不足取的。曾有一个考生,平时的解题能力很高,但最后的考试成绩却不是很理想,谈到自己失利的原因时,他说,自己平时几乎全部靠做题来提高水平,而对知识点缺乏更高层次上的把握和运用,导致遇到陌生的题目时,得分率严重下降。所以考生不能为做题而做题,要在做题时巩固基础,提高自己对知识点更高层次上的把握和运用。要善于归纳总结,对数学习题最好能形成自己熟悉的解题体系,也就是对各种题型都能找到相应的解题思路,从而在最后的实考中面对陌生的试题时能把握主动。
猜你感兴趣: