初二数学实数思维导图
数学思维导图可以有意识地培养学生的思维外显能力。下面小编精心整理了初二数学实数思维导图,供大家参考,希望你们喜欢!
初二数学实数思维导图汇总
实数的完备有序域
实数集合通常被描述为“完备的有序域”,这可以几种解释。
首先,有序域可以是完备格。然而,很容易发现没有有序域会是完备格。这是由于有序域没有最大元素(对任意元素 , 将更大)。所以,这里的“完备”不是完备格的意思。
另外,有序域满足戴德金完备性,这在上述公理中已经定义。上述的唯一性也说明了这里的“完备”是指戴德金完备性的意思。这个完备性的意思非常接近采用戴德金分割来构造实数的方法,即从(有理数)有序域出发,通过标准的方法建立戴德金完备性。
这两个完备性的概念都忽略了域的结构。然而,有序群(域是种特殊的群)可以定义一致空间,而一致空间又有完备空间的概念。上述完备性中所述的只是一个特例。(这里采用一致空间中的完备性概念,而不是相关的人们熟知的度量空间的完备性,这是由于度量空间的定义依赖于实数的性质。)当然,并不是唯一的一致完备的有序域,但它是唯一的一致完备的阿基米德域。实际上,“完备的阿基米德域”比“完备的有序域”更常见。可以证明,任意一致完备的阿基米德域必然是戴德金完备的(当然反之亦然)。这个完备性的意思非常接近采用柯西序列来构造实数的方法,即从(有理数)阿基米德域出发,通过标准的方法建立一致完备性。
“完备的阿基米德域”最早是由希尔伯特提出来的,他还想表达一些不同于上述的意思。他认为,实数构成了最大的阿基米德域,即所有其他的阿基米德域都是 的子域。这样 是“完备的”是指,在其中加入任何元素都将使它不再是阿基米德域。这个完备性的意思非常接近用超实数来构造实数的方法,即从某个包含所有(超实数)有序域的纯类出发,从其子域中找出最大的阿基米德域。
实数的基本定理
实数系的基本定理也称实数系的完备性定理、实数系的连续性定理,这些定理分别是确界存在定理、单调有界定理、有限覆盖定理、聚点定理、致密性定理、闭区间套定理和柯西收敛准则,共7个定理,它们彼此等价,以不同的形式刻画了实数的连续性,它们同时也是解决数学分析中一些理论问题的重要工具,在微积分学的各个定理中处于基础的地位。7个基本定理的相互等价不能说明它们都成立,只能说明它们同时成立或同时不成立,这就需要有更基本的定理来证明其中之一成立,从而说明它们同时都成立,引进方式主要是承认戴德金公理,然后证明这7个基本定理与之等价,以此为出发点开始建立微积分学的一系列概念和定理。在一些论文中也有一些新的等价定理出现,但这7个定理是教学中常见的基本定理。
一、上(下)确界原理
非空有上(下)界数集必有上(下)确界。
二、单调有界定理
单调有界数列必有极限。具体来说:
单调增(减)有上(下)界数列必收敛。
三、闭区间套定理(柯西-康托尔定理)
对于任何闭区间套,必存在属于所有闭区间的公共点。若区间长度趋于零,则该点是唯一公共点。
四、有限覆盖定理(博雷尔-勒贝格定理,海涅-波雷尔定理)
闭区间上的任意开覆盖,必有有限子覆盖。或者说:闭区间上的任意一个开覆盖,必可从中取出有限个开区间来覆盖这个闭区间。
五、极限点定理(波尔查诺-魏尔斯特拉斯定理、聚点定理)
有界无限点集必有聚点。或者说:每个无穷有界集至少有一个极限点。
六、有界闭区间的序列紧性(致密性定理)
有界数列必有收敛子列。
七、完备性(柯西收敛准则)
数列收敛的充要条件是其为柯西列。或者说:柯西列必收敛,收敛数列必为柯西列。
注:只有充要条件的命题才能称之为“准则”,否则不能称为“准则”。
以上7个命题称为实数系的基本定理。实数系的7个基本定理以不同形式刻画了实数的连续性,它们彼此等价。在证明中,可采用单循环证明的方式证明它们的等价性。它们之间等价性的证明可以参看《数学分析札记》。
在闭区间上连续函数的性质的证明中,实数系的基本定理是非常重要的工具,但是它们之间的等价性不能说明它们都成立,必须要有更基本的定理来证明其中之一成立,从而以上的命题都成立,进过反复仔细琢磨,问题就归结为实数的引入问题了。如在菲赫金哥尔茨的《微积分学教程》 中,可以用实数的连续性来推出确界定理,在华东师范大学数学系编的《数学分析(上册)》(第四版)中就通过实数十进制小数形式推出确界定理,这也说明了建立实数系的严格定义的重要性。从逻辑上,应该是先建立了实数,有了实数的定义之后,再得出实数系的基本定理,从而能够在实数域上建立起严格的极限理论,最后得到严格的微积分理论,但数学历史的发展恰恰相反,最先产生的是微积分理论,而严格的极限理论是在19世纪初才开始建立的,实数系的基本定理已经基本形成了之后,19世纪末实数理论才诞生,这时分析的算数化运动才大致完成。
看过“初二数学实数思维导图”的人还看了: