初中数学逆向思维
不少数学试题所考查的知识点并不难,但是解题时必须从相反方向考虑(称为“逆向思维”),同学们必须重视培养这种有用的能力。下面小编为你介绍初中数学逆向思维题目,希望能帮到你。
数学概念的反问题
例1 若化简|1-x|--的结果为2x-5,求x的取值范围。
分析:原式=|1-x|-|x-4|
根据题意,要化成:x-1-(4-x)=2x-5
从绝对值概念的反方向考虑,推出其条件是:
1-x≤0,且x-4≤0
∴x的取值范围是:1≤x≤4
二、代数运算的逆过程
例2 有四个有理数:3,4-6,10,将这四个数进行加减乘除四则运算(每个数用且只用一次),使结果为24。请写出一个符合要求的算式。
分析:不妨先设想3×8=24,再考虑怎样从4,-6,10算出8,这样就找到一个所求的算式:
3(4-6+10)=24
类似的,还有:4-(-6×10)÷3;
10-(-6×3+4);3(10-4)-(-6)等。
三、逆向应用不等式性质
例3 若关于x的不等式(a-1)x>a2-2的解集为x<2,求a的值。
分析:根据不等式性质3,从反方向进行分析,得:
a-1<0,且a2-2=2(a-1)
∴所求a值为a=0。
四、逆向分析分式方程的检验
例4 已知方程---=1有增根,求它的增根。
分析:这个分式方程的增根可能是x=1或x=-1
原方程去分母并整理,得x2+mx+m-1=0
如果把x=1代入,能求出m=3;
如果把x=-1代入,则不能求出m;
∴m的值为3,原方程的增根是x=1。
五、图形变换的反问题
例5 △ABC中,AB
分析:我们曾经把梯形剪切后拼成三角形,就是使梯形的一部分绕一条腰的中点旋转180°,本题正好相反。由此得到启发,再应用等腰梯形的性质,得到如下做法:
作AD⊥BC,垂足为D点,在BC上截取DE=BD,连结AE,则∠AEB=∠B。
过AC中点M作MP∥AE,交BC于P,MD就是所求的剪切线。剪下△MPC,可以拼成等腰梯形ABPQ。
逆向思维问题特点
1.普遍性
逆向性思维在各种领域、各种活动中都有适用性,由于对立统一规律是普遍适用的,而对立统一的形式又是多种多样的,有一种对立统一的形式,相应地就有一种逆向
逆向思维
思维的角度,所以,逆向思维也有无限多种形式。如性质上对立两极的转换:软与硬、高与低等;结构、位置上的互换、颠倒:上与下、左与右等;过程上的逆转:气态变液态或液态变气态、电转为磁或磁转为电等。不论那种方式,只要从一个方面想到与之对立的另一方面,都是逆向思维。
2.批判性
逆向是与正向比较而言的,正向是指常规的、常识的、公认的或习惯的想法与做法。逆向思维则恰恰相反,是对传统、惯例、常识的
逆向思维
反叛,是对常规的挑战。它能够克服思维定势,破除由经验和习惯造成的僵化的认识模式。
3.新颖性
循规蹈矩的思维和按传统方式解决问题虽然简单,但容易使思路僵化、刻板,摆脱不掉习惯的束缚,得到的往往是一些司空见惯的答案。其实,任何事物都具有多方面属性。由于受过去经验的影响,人们容易看到熟悉的一面,而对另一面却视而不见。逆向思维能克服这一障碍,往往是出人意料,给人以耳目一新的感觉。