学习啦>论文大全>毕业论文>工学论文>电子机械>

关于电力电子方面的论文

秋梅分享

  电力电子技术产业作为当代高新技术尤其是信息技术产业与传统产业的接口,在国民经济中扮演着越来越重要的角色。下文是学习啦小编为大家搜集整理的关于电力电子方面的论文的内容,欢迎大家阅读参考!

  关于电力电子方面的论文篇1

  浅析电力系统电力电子技术应用

  摘 要:在现代社会科技学技术不断发展的形势下,电力电子技术在电力系统中的应用也更加广泛和深入。诸多新的电子材料、设备以及技术的运用,有效地推动了我国电力事业的发展。本文就对于电力电子技术在电力系统中应用的相关问题进行了分析和探讨。

  关键词:电力电子技术;电力系统;应用

  0 引言

  作为一个具有较强专业性、综合性和系统性的技术平台,电力电子技术其涵盖了多个领域的专业技术内容。经过长时间的发展和变化,其被广泛地应用于各个行业当中,极大幅度地推动了我国电力能源领域的发展。随着科学技术的不断发展进步,电力系统中的电力电子技术的应用范围和深度也得到了进一步的增加。电力电子技术的应用,提高了电力系统的整体工作效率和工作性能。电力电子技术应用于电力系统的整个发电、配电、输电已基本检点的环节当中,是现代电力系统发展建设中的重点内容。电力电子技术应用于电力系统中,可以有效地提高变电控制的整体效果。

  我国电网建设工作一直在有条不紊的开展,不断扩大的电网规模对于变电运行管理提出了更高的要求。通过电力电子技术的应用,可以实现高效、高质量、高精度、高性能的控制和管理,有效地降低了管理成本和工作难度,提高了系统运行的安全性和稳定性。在电力系统运行的过程中,电力电子技术的应用可以有效地实现对电力系统运行的实时监控和管理,有效地提高了电力系统运行中的容错效果,减少了后期管理维护的难度和成本,让电力系统的运行更加可靠。电力电子技术的应用通过结合先进的信息化管理技术,让电力系统运行中的相关数据信息可以得到更加全面的收集和处理,通过计算机对相关数据进行分析处理,为管理决策的制定和计划的编制提供科学的依据。

  1 电力电子技术在电力系统中的应用

  1.1 发电环节的应用

  电力系统的发电环节是一个较为复杂的综合性系统,其中存在多个发电组和相关设备,设备的结构相对复杂,并且整体技术含量相对较高。相关技术人员必须要具有专业的技术水平,才能完成相关设备的设计、运行、管理与维护工作。在电力系统的发电环节,应用电力电子技术,可以有效地提高整个发电系统的设备工作效率。励磁控制是现阶段广为运用的发电机控制方式,其通过利用品闸管整流电路的方式来实现设备的连接,整个控制系统的结构相对简单,具有较高的可靠性,并且造价成本也处于一个可接受的状态之下,性能可以有效地满足相关技术需求。

  而静止励磁的控制方式,则通过对励磁机进行改造,去除惯性环节,从而达到提高稳定性和运行效果的目的。科学的整改方案,可以更好地结合电力系统的运行规律来实现控制,让电气工作效率得到更好的保障。变速励磁控制的方式,主要通过变频设备,对于发电中机组运行速度进行相应的调节和控制,提高电力功效,让机组的变化速率处于一个自动控制的状态下,结合励磁设备的控制,让整个功率的输出更加稳定、高效,并最大限度地降低系统的功耗,其被广泛应用于风力发电和水力发电的过程中。在发电厂发电设备中,其发电设备的用电量是客观存在的,并且在整个设备的耗电量中占据着一个较高的比例。为了实现对这类能源消耗问题的有效控制,变频器的出现和应用已经被广泛的认可和利用。变频器通过控制,可以对发电机机组的工作频率进行自动调节,从而实现对能源消耗的节约。在电力电子技术不断发展的形势下,各类变频技术逐渐得到了更加深入的发展,并为提高发电系统的工作效率,减少能耗提供了巨大的帮助。

  1.2 输电环节的应用

  在现代科学技术不断发展的趋势下,电力电子技术的发展与应用,使得越来越多的电子器件得到了生产和运用,为电力系统的发展创造了更多的平台和支持。在输电系统中,电力电子器件的运用,有效地对于电网稳定性进行了保障,提高了电网运行的可靠性,让电网运行发展更加安全、可靠。在当前电力系统的输电环节中,直流与轻型直流输电是较为常见的两种方式。这种输电方式可以有效地提高输电的容量,并且可以灵活地进行调节与控制,输电过程较为稳定,并且实现了对长距离电力传输带支持和供应。针对不同的电力输送需求,可以采取不同的输电方式,让直流输电技术的优势得到最大限度的发挥。随着技术的进步,柔性交流输电技术也逐渐受到了关注和应用。柔性交流输电技术融合了微电子、微处理、电力电子技术、控制技术以及通信技术等多方面的技术,实现了对交流输电的灵活控制,让交流电网的稳定性得到了很好的保障,并有效地降低了输电成本。柔性交流输电技术通过为电网提供无功功率和感应,从而达到提高输电效率和质量的目的。

  1.3 配电环节的应用

  在配电环节中,有效地控制是确保电能质量的关键。电能质量的控制需要在配电过程中对于频率、谐波、电压等要求得有效的满足,并且对干扰和瞬态波动问题的干扰进行避免。现阶段,电力电子技术应用的过程中,基于DFACTS的电能质量调节装置的应用,可以有效地对电能质量进行保证。随着柔性交流输电系统的发展和成熟,配电质量的控制方式得到了丰富和进一步的发展。DFACTS技术可以被视为缩小版的FACTS设备技术,二者工作原理、性能、结构、功能都存在一定的相似性。随着电力电子器件不断发展,市场上电气设备出现求过于供的现象,DFACTS设备市场前景广阔,市场需求量。DFACTS设备市场介入相对容易。而且该设备的成本投入比较少,技术开发比较简单。随着市场不断发展,DFACTS设备产品将进入高速发展状态。

  2 结语

  随着科学技术水平的不断提高,各类新技术的出现和应用,电力电子技术的发展也逐渐步入了新的阶段。相关技术人员应该加强对新技术的研究和应用,对新技术的优势进行充分的发挥,更好地促进电力系统的发展和完善,提高电力生产效率,为我国电力事业健康稳定发展作出更大的贡献。

  参考文献:

  [1] 张娜.电力电子技术的发展及应用探究[J].电子技术与软件工程,2015(03).

  [2] 于闯.浅析电力电子技术在电力系统中的应用[J].科技经济市场,2015(07).

  [3] 张文亮,汤广福,查鲲鹏,贺之渊.先进电力电子技术在智能电网中的应用[J].中国电机工程学报,2010(04).

  关于电力电子方面的论文篇2

  试论现代电力电子及其应用

  摘要:电力电子技术是电气工程的三大领域-电力,电子和控制交叉形成的边缘学科。从1956年贝尔实验室发明第一个晶闸管(scR)开始,真正步入了电力电子技术时代。电力电子技术本身不仅是一项高新技术.而且还是其它多项高新技术发展的基础。其应用从航空航天到家用电器的一切经济和生活领域,是国家工业发展必不可少的专业技术,它将给现代生产和现代生活带来深远的影响。

  关键词:电力电子技术应用领域发展趋势

  一、电力电子技术研究的问题

  电力电子技术是一项利用功率半导体器件,应用现代控制理论,微处理器或计算机控制技术,实现对电能进行控制和变换的技术。这种技术是以尽可能高的效率将一种形式的电压、电流、频、相数的电能变换成另一种形式的电压、电流、频率、相数的电能。它尽可能使用无损耗的磁元件、电容元件和开关工作状态的功率半导体器件,少用或不用损耗性的电阻和线性工作状态的功率半导体,构成开关型高效率的功率处理系统。因此,电力电子技术也是一项高效节能的技术。

  它与微电子技术中的信号处理系统不同,后者是对输入信息进行处理,完成某种功能。例如,拟放大、数字编码、数/模转换或模/数转换等。为完成这些处理,信号处理系统只需要很少的电功率,系统的效率不是主要的。而电力电子技术的功率处理系统,变换效率是最重要的指标之一,它是强电与弱电的结合点。

  在电力电子技术的功率处理系统中,磁性元件(电感或变压器等)的重量和尺寸占主要部份。而提高功率半导体器件的开关频率,可使磁隆元件小型轻量化。因此,高频化是电力电子技术的主要发展方向之一。有两种电路方案可供选择:非谐振式和谐振式(包括准谐振式)。前者技术成熟,但开关损耗随频率提高而增加,频率提高有限。这是一个尚在探讨解决中的开关吸收问题。后者则处于发展研究中,原理上没有开关损耗,但目前技术还不成熟,只是在某些中小功率系统中得到初步应用。

  此外,开关型高效率的电力电子系统是一个非线性的离散时变系统,它的建模、仿真、分析和检测等比较复杂.难度较大。现在还是一个研究热点。仿真软件PsPlcE技术还不成熟,使用时有很大局限性。

  二、现代电力电子的应用领域

  1.计算机高效率绿色电源

  高速发展的计算机技术带领人类进入了信息社会,同时也促进了电源技术的迅速发展。八十年代,计算机全面采用了开关电源,率先完成计算机电源换代。接着开关电源技术相继进人了电子、电器设备领域。计算机技术的发展,提出绿色电脑和绿色电源。绿色电脑泛指对环境无害的个人电脑和相关产品,绿色电源系指与绿色电脑相关的高效省电电源,根据美国环境保护署l992年6月17日“能源之星”计划规定,桌上型个人电脑或相关的外围设备,在睡眠状态下的耗电量若小于30瓦,就符合绿色电脑的要求,提高电源效率是降低电源消耗的根本途径。就目前效率为75%的200瓦开关电源而言,电源自身要消耗50瓦的能源。

  2.通信用高频开关电源

  通信业的迅速发展极大的推动了通信电源的发展。高频小型化的开关电源及其技术已成为现代通信供电系统的主流。在通信领域中,通常将整流器称为一次电源,而将直流-直流(DC/DC)变换器称为二次电源。一次电源的作用是将单相或三相交流电网变换成标称值为48V的直流电源。目前在程控交换机用的一次电源中,传统的相控式稳压电源己被高频开关电源取代,高频开关电源(也称为开关型整流器SMR)通过MOSFET或IGBT的高频工作,开关频率一般控制在50-100kHz范围内,实现高效率和小型化。近几年,开关整流器的功率容量不断扩大,单机容量己从48V/12.5A、48V/20A扩大到48V/200A、48V/400A。

  3.直流

  直流(DC/DC)变换器DC/DC变换器将一个固定的直流电压变换为可变的直流电压,这种技术被广泛应用于无轨电车、地铁列车、电动车的无级变速和控制,同时使上述控制获得加速平稳、快速响应的性能,并同时收到节约电能的效果。用直流斩波器代替变阻器可节约电能(20~30)%。直流斩波器不仅能起调压的作用(开关电源),同时还能起到有效地抑制电网侧谐波电流噪声的作用。通信电源的二次电源DC/DC变换器已商品化,模块采用高频PWM技术,开关频率在500kHz左右,功率密度为5W~20W/in3。随着大规模集成电路的发展,要求电源模块实现小型化,因此就要不断提高开关频率和采用新的电路拓扑结构,目前已有一些公司研制生产了采用零电流开关和零电压开关技术的二次电源模块,功率密度有较大幅度的提高。

  4.不间断电源(UPS)不间断电源(UPS)是计算机、通信系统以及要求提供不能中断场合所必须的一种高可靠、高性能的电源。

  交流市电输入经整流器变成直流,一部分能量给蓄电池组充电,另一部分能量经逆变器变成交流,经转换开关送到负载。为了在逆变器故障时仍能向负载提供能量,另一路备用电源通过电源转换开关来实现。

  5.高频开关电源的发展趋势。

  在电力电子技术的应用及各种电源系统中,开关电源技术均处于核心地位。对于大型电解电镀电源,传统的电路非常庞大而笨重,如果采用高顿开关电源技术,其体积和重量都会大幅度下降,而且可极大提高电源利用效率、节省材料、降低成本。在电动汽车和变频传动中,更是离不开开关电源技术,通过开关电源改变用电频率,从而达到近于理想的负载匹配和驱动控制。高频开关电源技术,更是各种大功率开关电源(逆变焊机、通讯电源、高频加热电源、激光器电源、电力操作电源等)的核心技术。

  6.高频化理论分析和实践经验表明,电气产品的变压器、电感和电容的体积重量与供电频率的平方根成反比。

  所以当我们把频率从工频50Hz提高到20kHz,提高400倍的话,用电设备的体积重量大体下降至工频设计的5~l0%。无论是逆变式整流焊机,还是通讯电源用的开关式整流器,都是基于这一原理。同样,传统“整流行业”的电镀、电解、电加工、充电、浮充电、电力合闸用等各种直流电源也可以根据这一原理进行改造,成为“开关变换类电源”,其主要材料可以节约90%或更高,还可节电30%或更多。由于功率电子器件工作频率上限的逐步提高,促使许多原来采用电子管的传统高频设备固态化,带来显著节能、节水、节约材料的经济效益,更可体现技术含量的价值。

猜你喜欢:

    3097799