学习啦>论文大全>毕业论文>理学论文>统计学>

统计硕士毕业论文

秋梅分享

  统计学是一门实质性的社会科学,既研究社会生活的客观规律,也研究统计方法。下文是学习啦小编为大家整理的关于统计硕士毕业论文的范文,欢迎大家阅读参考!

  统计硕士毕业论文篇1

  浅析大数据时代统计学的发展

  摘要:大数据已经承成为助力互联网+发展的重要手段,成为创客实现梦想星天地的必要途径,其已经成为我们生活中不可缺少的一部分,大数据正在以一种前所未有的态势推动着各行各业的发展,其蓬勃发展态势也标志大数据时代的袭来。

  关键词:大数据;统计学;发展

  大数据时代以迅雷不及掩耳之势席卷世界,在全球范围内掀起了前所未有的数据革命浪潮。相对于政府单位的统计数据来说,大数据主要利用的是多层次、多样化的数据采集方式,整合了多种数据的开发优势,并且利用现代科学技术手段和高速处理以及信息架构数据等资源,兼具极高的使用价值和判断决策能力。一方面,统计调查数据的多样化发展趋势和电子商务产业的不断发展,为统计数据的使用方式和生产方式制造了不小的麻烦,不断地挑战者政府部门数据管理系统和统计数据的概念。另一方面,信息技术、网络发展以及空间信息技术的不断进步,为统计生产力的升级发展提供了广阔的视角和空间。数据量急剧增长的电子化、信息化和产业化数据,都成为了统计数据发展的重要来源。种类不断增多的“大数据”资源,正在成为政府统计部门利用研究的重要领域。

  一、大数据与统计学的区别

  统计知识在大数据的利用研究中有多样化的应用形式,主要是对“大数据”进行肢解,对爆炸增长的数据信息进行搜索、分类以及整合主要依赖于统计学。因此,大数据的相关研究在一定程度上运用了统计学的知识。但是,大数据的使用尚未被统计学这门学科充分利用,这主要是因为大数据的运用方式,使用模式和统计学之间存在着重要差异。统计学主要利用的是样本统计资源,样本主要在根据既定的概率标准从总体中抽样调查,但是随机抽样调查是带有成本属性的,例如消耗时间、资本投入的成本等。在样本数量逐渐增加的情况下,样本估计的误差范围是伴随着总体样本数量的增大而逐渐增加的,这是样本统计学不能忽视的缺点。大数据时代最具代表性的就是海量的信息数据化以及即时电子商务信息,大数据在整体上呈现出“总体样本数据化”的趋势,这样的特征恰好可以补充样本统计的弊端。大数据环境下的整体样本统计即使可以囊括全部的样本容量,但是因为很多情况下数据具有非结构性和半数据化的特征,而且大量的数据资源呈现的是重视尾部分布的状态,方差、标准差等标准化的方法变得毫无意义,整体依靠性和不稳定性经常会超越经典时间内的时间序列的整体假设性,所以概率论的应用范围呈现狭窄化的发展趋势。因此,统计学在利用大数据进行样本统计的过程中,可以对整体上的数据资源进行融合和选择,这和样本统计中的数据化处理技术存在异曲同工之妙。

  二、大数据时代统计学教育的发展

  1、全面培养人才素质

  统计学专业的学生需要具备良好与人交往能力。统计学的学生很多都是理科出身的学生,不善于交际。但是在日常的工作中,有数据经验的科学家应该经常和每个部门的工作人员交流,协同工作。怎么样才能让颇具专业性的数据分析结果让普通的老百姓也可以读懂,让每个部门的工作人员都能无障碍地理解,这是不容易做到的。要训练自己的交往能力和沟通技能,主动地参加演讲活动是不错的渠道,演讲活动锻炼了演讲者的自信,在整个演讲的过程中,能否清晰地表达自己的思想以及给人以信服力是至关重要的。需要培养数据常识,广其见闻。数据科学家经常面对各种各样的海量数据,并需要从这些数据中挖掘出有价值的信息,这就需要数据科学家具有强烈的数据敏感性。对数据的敏感程度的训练不是一蹴而就的,要经过长时间的积累和数据分析工作的磨练,同时也可以根据阅读数据分析材料积累阅历,提升对数据资源的敏感程度。

  2、培养应用型人才

  大数据时代培养的数据科学家需要两方面的基本素质,第一是概念性,也就前面所说的数据科学家需要掌握的基本素养和专业知识;第二是实践性,也就是本文中我们提及的应用型人才,也就是实际操作中处理数据的能力。在高校开展大数据分析研究生学科,最大的问题是没有可用的数据,这就需要高效与大数据企业合作,进行研究生的联合培养,注重学生的实际操作能力,这里面涉及到我们的应用统计学专业硕士的双导师培养制度,一名校内导师一名校外导师,校内导师注重学生的概念性,校外导师注重学生的实践性,学生通过在校外导师单位的实习,从而熟悉并且掌握实际工作中所需要的技能。

  3、促进统计与数学、计算机学科合作

  “大数据”时代需要的海量数据分析资源仅仅凭借统计学科单一学科的发展是不能满足发展需求的,大数据的数据结构性特征已经抛弃了传统意义上的数据分析模式的非智能化框架,而且数据分析需要利用新型的数据运算方式以及计算机技能分析,这也是进行数据分析工作的拦路虎。所以,数据科学家的成长仅仅依靠单一的统计学科知识的学习是远远不够的,其需要的是数学、计算机和统计学三门学科融合发展,紧密结合。三门学科之间交叉发展,融会贯通,这样既可以发挥学科的优势资源,同时也能弥补其他学科的弊端。

  三、结语

  数据信息的爆炸式增长使我们在使用统计数据处理信息时需要更多的数据资源,更有甚者,在很多情况下可以利用全面化的数据,数据资源不再是制约统计分析的唯一因素,大数据前提下的统计学效用和粘合度预测的准确程度不断提升,而且可以发现诸多在样本统计基础上未能显现的细节。统计学关键优势就是“见微知著”,也是统计学在数据环境下的约束性妥协。在海量数据汹涌袭来的年代,充分发挥统计学的优势,和大数据资源整合发展,实现“以小见大”和“由繁入简”的有效结合。

  参考文献:

  [1]田茂再.大数据时代统计学重构研究中的几个热点问题[J].统计研究,2015,05:3-12.

  [2]刘春杰.大数据时代统计学教育面对挑战的应对[J].凯里学院学报,2015,03:29-32.

  [3]大数据时代统计学的重构与创新――首届“大数据与应用统计国际会议”述评[J].统计研究,2015,02:3-9.

  统计硕士毕业论文篇2

  论统计学中的统计思想

  【摘 要】所谓统计思想,就是在统计实际工作、统计学理论的应用研究中,必须遵循的基本理念和指导思想。统计思想主要包括均值思想、变异思想、估计思想、相关思想、拟合思想、检验思想等思想。文章通过对统计思想的阐释,提出关于统计思想认识的三点思考。

  【关键词】统计学;统计思想;认识

  1关于统计学

  统计学是一门实质性的社会科学,既研究社会生活的客观规律,也研究统计方法。统计学是继承和发展基础统计的理论成果,坚持统计学的社会科学性质,使统计理论研究更接近统计工作实际,在国家和社会得到广泛发展。

  2 统计学中的几种统计思想

  2.1 统计思想的形成

  统计思想不是天然形成的,需要经历统计观念、统计意识、统计理念等阶段。统计思想是根据人类社会需求的变化而开展各种统计实践、统计理论研究与概括,才能逐步形成系统的统计思想。

  2.2 比较常用的几种统计思想

  所谓统计思想,就是统计实际工作、统计学理论及应用研究中必须遵循的基本理念和指导思想。统计思想主要包括:均值思想、变异思想、估计思想、相关思想、拟合思想、检验思想。现分述如下:

  2.2.1 均值思想

  均值是对所要研究对象的简明而重要的代表。均值概念几乎涉及所有统计学理论,是统计学的基本思想。均值思想也要求从总体上看问题,但要求观察其一般发展趋势,避免个别偶然现象的干扰,故也体现了总体观。

  2.2.2 变异思想

  统计研究同类现象的总体特征,它的前提则是总体各单位的特征存在着差异。统计方法就是要认识事物数量方面的差异。统计学反映变异情况较基本的概念是方差,是表示“变异”的“一般水平”的概念。平均与变异都是对同类事物特征的抽象和宏观度量。

  2.2.3 估计思想

  估计以样本推测总体,是对同类事物的由此及彼式的认识方法。使用估计方法有一个预设:样本与总体具有相同的性质。样本才能代表总体。但样本的代表性受偶然因素影响,在估计理论对置信程度的测量就是保持逻辑严谨的必要步骤。

  2.2.4 相关思想

  事物是普遍联系的,在变化中,经常出现一些事物相随共变或相随共现的情况,总体又是由许多个别事务所组成,这些个别事物是相互关联的,而我们所研究的事物总体又是在同质性的基础上形成。因而,总体中的个体之间、这一总体与另一总体之间总是相互关联的。

  2.2.5 拟合思想

  拟合是对不同类型事物之间关系之表象的抽象。任何一个单一的关系必须依赖其他关系而存在,所有实际事物的关系都表现得非常复杂,这种方法就是对规律或趋势的拟合。拟合的成果是模型,反映一般趋势。趋势表达的是“事物和关系的变化过程在数量上所体现的模式和基于此而预示的可能性”。

  2.2.6 检验思想

  统计方法总是归纳性的,其结论永远带有一定的或然性,基于局部特征和规律所推广出来的判断不可能完全可信,检验过程就是利用样本的实际资料来检验事先对总体某些数量特征的假设是否可信。

  2.3 统计思想的特点

  作为一门应用统计学,它从数理统计学派汲取新的营养,并且越来越广泛的应用数学方法,联系也越来越密切,但在统计思想的体现上与通用学派相比,还有着自己的特别之处。其基本特点能从以下四个方面体现出:(1)统计思想强调方法性与应用性的统一;(2)统计思想强调科学性与艺术性的统一;(3)统计思想强调客观性与主观性的统一;(4)统计思想强调定性分析与定量分析的统一。

  3 对统计思想的一些思考

  3.1 要更正当前存在的一些不正确的思想认识

  英国著名生物学家、统计学家高尔顿曾经说过:“统计学具有处理复杂问题的非凡能力,当科学的探索者在前进的过程中荆棘载途时,唯有统计学可以帮助他们打开一条通道”。但事实并非这么简单,因为我们所面临的现实问题可能要比想象的复杂得多。此外,有些人认为方法越复杂越科学,在实际的分析研究中,喜欢简单问题复杂化,似乎这样才能显示其科学含量。其实,真正的科学是使复杂的问题简单化而不是追求复杂化。与此相关联的是,有些人认为只有推断统计才是科学,描述统计不是科学,并延伸扩大到只有数理统计是科学、社会经济统计不是科学这样的认识。这种认识是极其错误的,至少是对社会经济统计的无知。比利时数学家凯特勒不仅研究概率论,并且注重于把统计学应用于人类事物,试图把统计学创建成改良社会的一种工具。经济学和人口统计学中的某些近代概念,如GNP、人口增长率等等,均是凯特勒及其弟子们的遗产。

  3.2要不断拓展统计思维方式

  统计学是以归纳推理或归纳思维为主要的逻辑方式的。众所周知,逻辑推理方式主要有两种:归纳推理和演绎推理。归纳推理是基于观测到的数据信息(尤其是不完全甚至劣质的信息)去产生新的知识或去验证一个假设,即以所掌握的数据信息为依据,归纳得出具有一般特征的结论。归纳推理是要在数据信息的基础上透过偶然性去发现必然性。演绎推理是对统计认识能力的深化,尤其是在根据必然性去研究和认识偶然性方面,具有很大的作用。

  3.3深化对数据分析的认识

  任何统计研究都离不开数据分析。因为这是得到统计研究结论的必要环节。虽然统计分析的形式随时代的推移而变化着,但是“从数据中提取一切信息”或者“归纳和揭示”作为统计分析的目的却一直没有改变。对统计数据分析的原因有以下三个方面:一是基于同样的数据会得出不同、甚至相反的分析结论;二是我们所面对的分析数据有时是缺损的或存在不真实性;三是我们所面对的分析数据有时则又是海量的,让人无从下手。虽然统计数据分析已经经历了描述性数据分析(DDA)、推断性数据分析(IDA)和探索性数据分析(EDA)等阶段,分析的方法技术已经有了质的飞跃,但与人类不断提高的要求相比,存在的问题似乎也越来越多。所以,我们必须深化对数据分析的认识,围绕“准确解答特定问题并且从数据中获取一切有效信息”这一目的,不断拓展研究思路,继续开展数据分析方法技术的研究。

  参考文献

  [1] 陈福贵.统计思想雏议[J]北京统计, 2004,(05) .

  [2] 庞有贵.统计工作及统计思想[J]科技情报开发与经济, 2004,(03) .

  [3] 范文正.几种基本统计思想的现实意义[J]统计与决策, 2007,(08) .

  [4] 邢莉.《九章算术》中的统计学思想探究[J]. 统计研究, 2008,(03)

    2828371