有关数学史的论文
数学史不仅追溯数学内容、思想和方法的演变、发展过程,而且还探索影响这种过程的各种因素,以及历史上数学科学的发展对人类文明所带来的影响。下文是学习啦小编为大家整理的有关数学史的论文下载的范文,欢迎大家阅读参考!
有关数学史的论文下载篇1
中国古代及近现代数学史探究
中华民族是一个具有悠久历史和灿烂文化的民族,在灿烂的文化瑰宝中数学在世界数学发展史中也同样具有许多耀眼的光环.研究中国的数学发展历程有着重要的现实意义.
1 中国古代数学的发展史。
1.1起源与早期发展.数学是研究数和形的科学,是中国古代科学中一门重要的学科.中国数学发展的萌芽期可以追溯到先秦时期,最早的记数法在殷墟出土的甲骨文卜辞中可以找到记数的文字.如独立的记数符号一到十,百、千、万,最大的数字为三万,还有十进制的记数法.
在春秋时期出现中国最古老的计算工具---算筹,使用算筹进行计算称为筹算,中国古代数学的最大特点就是建立在筹算基础之上.古代的算筹多为竹子制成的同样长短和粗细的小棍子,用算筹记数有纵、横两种方式,个位用纵式,十位用横式,以此类推,并以空位表示零.这与西方及阿拉伯数学是明显不同的.
在几何学方面,在《史记·夏本记》中记录到夏禹治水时已使用了规、矩、准、绳等作图和测量工具,勾股定理中的“勾三股四弦五”已被发现.
1.2中国数学体系的形成与奠基时期.这一时期包括秦汉、魏晋、南北朝,共400年间的数学发展历史.中国古代的数学体系形成在秦汉时期,随着数学知识的不断系统化、理论化,相应的数学专书也陆续出现,如西汉初的《算数书》、西汉末年的《周髀算经》、东汉初年的《九章算术》以及南北朝时期的《孙子算经》、《夏侯阳算经》、《张丘建算经》等一系列算学着作.
《周髀算经》编纂于西汉末年,提出勾股定理的特例及普遍形式以及测太阳高、远的陈子测日法;《九章算术》成书于东汉初年,以问题形式编写,分属于方田、粟米、衰分、少广、商功、均输、盈不足、方程和勾股九章,特点在于注重理论联系实际,形成了以筹算为中心的数学体系.
中国数学在魏晋时期有了较大的发展,其中赵爽和刘徽的工作被认为是中国古代数学理论体系的开端.赵爽证明了数学定理和公式,详尽注释了《周髀算经》,其中一段530余字的“勾股圆方图”注文是数学史上极有价值的文献.刘徽的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产.
在南北朝时期数学的发展依然蓬勃,出现了《孙子算经》、《夏侯阳算经》、《张丘建算经》等算学着作.最具代表性的着作是祖冲之、祖父子撰写的《缀术》,圆周率精确到小数点后六位,推导出球体体积的正确公式,发展了二次与三次方程的解法.
1.3中国古代数学发展的盛衰时期.宋、元两代是中国古代数学空前繁荣,硕果累累的全盛时期.出现了一批着名的数学家和数学着作,其中最具代表性的数学家是秦九韶和杨辉.秦九韶在其着作的《数学九章》中创造了“大衍求1术”(整数论中的一次同余式求解法),被称为“中国剩余定理”,在近代数学和现代电子计算设计中起到重要的作用.他所论的“正负开方术”(数学高次方程根法),被称为“秦九韶程序”.现在世界各国从小学、中学、大学的数学课程,几乎都接触到他的定理、定律、解题原则.杨辉,中国南宋时期杰出的数学家和数学教育家,他在1261年所着的《详解九章算法》一书中,给出了二项式系数在三角形中的一种几何排列,这个三角形数表称为杨辉三角.“杨辉三角”在西方又称为“帕斯卡三角形”,但杨辉比帕斯卡早400多年发现.
随后从十四世纪中叶明王朝建立到明末的1582年,数学除了珠算外出现全面衰弱的局面.明代最大的成就是珠算的普及,出现了许多珠算读本,珠算理论已成系统,标志着从筹算到珠算转变的完成.在现代计算机出现之前,珠算盘是世界上简便而有效的计算工具.但由于珠算流行,筹算几乎绝迹,建立在筹算基础上的古代数学也逐渐失传,数学出现长期停滞.
2 中国近现代数学的发展史。
中国近现代数学发展时期是指从20世纪初至今的一段时间,开始于清末民初的大批留学生的回国后,各地大学的数学教育有了明显的起色,很多回国人员后成为着名的数学家和数学教育家,在世界都具有重要的影响,为中国近现代数学发展做出了重要贡献,这些着名的数学家及其贡献主要有:
2.1陈景润及其代表作.陈景润是世界着名解析数论学家之一.1966年,陈景润攻克了世界着名数学难题“哥德巴赫猜想”中的(1+2),在哥德巴赫猜想的研究上居世界领先地位,距摘取这颗数论皇冠上的明珠(1+ 1)只是一步之遥,于1978年和1982年两次收到国际数学家大会的邀请,在其他数论问题的成就在世界领域也是遥遥领先的.
2.2华罗庚及其贡献.华罗庚是近代世界着名的中国数学家,对数学的贡献是多方面的.在数论、矩阵几何学、典型群、自守函数论、多个复变函数论、偏微分方程及高维数值积分等领域都做出了卓越的贡献.他解决了高斯完整三角和的估计,推进华林问题、塔里问题的结果,在圆法与三角和估计法方面的结果长期居世界领先地位,着作有《堆垒素数论》、《数论导引》、《典型域上的多元复变量函数论》及合着《数论在近似分析中的应用》。他在普及应用数学方法、培养青年数学家等上都有特殊贡献.
2.3苏步青及其成就.苏步青是中国科学院院士,国内外享有成名的数学家.主要从事微分几何学和计算几何学等方面的研究.他在仿射微分几何学和射影微分几何学研究方面取得出色成果,在一般空间微分几何学、高维空间共轭理论、几何外型设计、计算机辅助几何设计等方面取得突出成就,对培养中国早期的数学人才曾起了巨大的推进作用.
2.4吴文俊及其贡献.吴文俊是数学界的战略科学家,现任中国科学院院士,第三世界科学院院士.曾获得首届国家自然科学一等奖(1956)、中国科学院自然科学一等奖(1979)、第三世界科学院数学奖(1990)、陈嘉庚数理科学奖(1993)、首届香港求是科技基金会杰出科学家奖(1994)、首届国家最高科技奖(2000)、第三届邵逸夫数学奖(2006)。他在拓扑学、自动推理、机器证明、代数几何、中国数学史、对策论等研究领域均有杰出的贡献,他的“吴方法”在国际机器证明领域产生巨大的影响,有广泛重要的应用价值.
3 研究中国数学发展史的重要意义。
与自然科学相比,数学是一门积累性科学,国内外许多着名的数学大师都对数学史都有着深远的研究.研究数学发展史可以为我们提供经验教训和历史借鉴,使我们的科学研究方向少走弯路或错路.从数学发展史中,我们要明白数学是一种文化,是形成现代文化的主要力量,是文化极其重要的因素.数学的概念来源于经验,与自然科学的生活世纪密不可分,在经过数学家严格的加工与推理后形成数学这门科学.研究数学的发展历史,弄清一个概念的来龙去脉,一个理论的兴旺和衰落,影响一种重要思想的产生的历史因素,有利于了解数学的现状,指导数学的未来,更好地接受以及学习数学,从历史的发展中获得借鉴和汲取教益,促进现实的科学研究,从而使数学与我们的生活更加贴切.
参考文献:
[1]王青建.数学史:从书斋到课堂[J].自然科学史研究,2004,2:152.
[2]郁组权着.中国古算解趣[M].北京:科学出版社,2004,10:138-141:216-218.
[3]李文林.数学史概论(第二版)[M].北京:高等教育出版社,2002.
有关数学史的论文下载篇2
浅析中学数学教学中数学史的运用
在中学数学教学中,教师在讲解某一知识点时,将与该知识相关的资料讲述给学生听,比如数学家研究出该知识点时采用的方法、运用的路径等,也就是说在教学过程中适当的将数学史分析给学生,从而让学生能够掌握学习数学的方法,同时还可以拓宽学生的知识面,由此可见,在中学数学教学中,数学史拥有着非常重要的作用,因此,研究数学史的应用对中学数学教学来说有十分重要的现实意义。
1 数学史的教育价值
1.1 能够培养出学生的数学创造性思维能力
在数学教学的过程中,不止要让学生掌握数学知识,还要让学生具备一定的创造性思维能力,具备利用数学知识解决实际问题的能力,这已经发展成为数学教育界的共识,为了完成这一目标,教师在进行中学数学教学时,根据数学史来设计教学内容,有利于培养学生的创造性思维。
1.2 帮助学生认识数学,理解数学思想
在实际的中学数学学习中,有很大一部分学生认为数学既枯燥又难学, 这个现象的存在除了教师的教学方法不恰当之外,学生自身的错误认识也是很重要的原因。 但是如果在中学数学教学过程中恰当的渗透相关数学史内容,不仅可以调动起学生学习数学的兴趣,还可以帮助学生认识数学,理解数学思想,掌握数学学习技巧。
1.3 培养学生的爱国主义精神
在数学方面,我国古代取得了比较灿烂的数学成就,而且有些成就的提出时间要比国外早很多,比如正负数的概念就是我国最先提出的。 在中学数学教学的过程中,通过相关数学史的介绍,让学生充分了解我国灿烂的数学文化,进而培养出学生的爱国主义精神,并增强民族自豪感。
1.4 培养文化素养
在人类发展的过程中,积累并形成了大量的文化,数学作为文化中的重要组成部分,在提高人们的文化素养方面也具有非常重要的作用。 实际上,数学史就是数学文化发展的历史,因此在中学数学教学的过程中,将数学史科学的融入进去,让学生了解并认同数学文化,进而有效的提升自身的文化素养。
1.5 激发学生的学习兴趣
在学生学习数学的过程中,兴趣是最好的学习动机,然而在现阶段的数学学习过程中,学生的学习动机并不明确,导致学生对数学的学习无兴趣,最终影响到数学教学效果。 但是在数学史中,有很多内容都能激发出学生的学习兴趣,比如巧拿火柴棒游戏、哥德巴赫猜想等,这样一来,学生学习数学的兴趣被调动起来,有效的提升了数学教学的效果。
2 数学史材料的选取标准
2.1 科学性与趣味性相结合
所谓科学性, 是指选择的数学史材料内容要符合史实,而且教师在传授数学史时,不能随意更改数学史的内容,更不能虚构数学史内容,要做到尊重历史、尊重事实。而趣味性,是指选择的数学史材料内容要生动或者曲折,以便于能够活跃课堂气氛,调动学生学习的积极性,让学生参与到数学教学过程中。在实际的教学中,教师要做到科学性与趣味性相结合,提高教学效果。
2.2 广泛性与实用性相结合
数学史涵盖的范围非常广,在选择数学史材料时,要选择能够反映不同时期、不同国家、不同文化背景的数学知识,这也是广泛性的要求; 实用性是指所选择的数学史材料要对学生的学习有帮助。将广泛性与实用性结合起来,不仅可以拓宽学生数学文化知识的知识面,还可以直接促进学生的发展,教师在进行教学的过程中,要实现广泛性与实用性相平衡。比如在讲授勾股定理的证明时,可以将国内外的证明方法都演示给学生看,以便于学生能更好地掌握勾股定理。
2.3 可接受性与目的性相结合
教师在选择数学史材料时,要充分的考虑学生的接受能力,要保证最终选取的数学史材料能够与学生所掌握的旧知识以及即将学习的新知识都有联系, 而且在数学史材料中涉及的数学知识难度要适中,以略高于学生的水平为最佳,这样才能达到教学的目的。
3 中学数学教学应用数学史的教学原则
3.1 指导性原则
在中学数学教学的过程中, 教师在选择数学史及运用数学史时,要充分的考虑学生的思考过程中,尽量的做到数学史教材化,实现数学知识与数学史的有机融合。 实际上,数学教学的效果在很大程度上受到二者有机整合的影响,一般来说,整合的过程包括数学史与相关数学知识间的融合、 数学史与学生之间的整合,只有做到有机整合,才能收获更好地教学效果。
3.2 选择性原则
在数学教学的过程中, 根据学生的实际学习水平及学习需求,有选择性、有针对性的将数学史内容融入到教学内容中,另外,根据具体的数学知识在教学中的作用,有选择的融入不同作用的数学史。
3.3 研究性原则
在数学史中,蕴含了数学知识及数学思想的演变进程。在学生学习数学知识的过程中,会因为不理解而产生困惑,学生的这种困惑通过数学史就可以很好地解决。因此,教师要详细的研究数学的概念、理论、方法等的变迁,从中总结出教学难点并重新构建,以便于能够更好的解答学生的困惑,让学生理解并掌握数学思想。
4 中学数学教学应用数学史的方法
4.1 通过方法的比较,引导学生发现学习
从总体上看, 教学内容可以划分为表层知识及深层知识两个层次,表层知识是指数学概念、性质、公式、定理等基本知识,而深层知识是指数学思想和数学方法。 深层知识并不是独立存在的,而是蕴含在表层知识红,需要经过分析及挖掘之后才能掌握,因此,教师在进行教学的过程中,要将相关知识的深层知识渗透给学生,让学生的认识达到质的飞跃。 在实际的教学中,教师可以对相关问题的中外解决办法进行对比, 从对比中让学生学会学习处理数学问题的方法。 比如在证明 1+2+3+……+n=1/2n(n+1)时,教师可以将数学归纳法及数学结合的方法来演示证明过程,从而让学生更好的认识数学思维。
4.2 从具体问题出发,引发学生积极思考
在数学教学过程中, 教师要尽量的将数学的创造过程反映给学生,并能够引导学生积极的对该创造过程进行思考,从而在理解的基础上予以把握,为了良好的实现这一教学目标,就需要教师根据教学内容创设恰当的情境, 让学生置身情境中去发现真理,只有这样,学生才能真正的学会数学知识。 比如等差数列教学,可以利用杨辉的“三阶幻方”来辅助教学,以提升教学效果。
4.3 利用数学史开展探究性学习
研究性学习针对的是学生的学习过程, 通过对知识的研究和探索, 从而有效地提升自身的思维能力及解决实际问题的能力。 在数学教学中,开展探究性学习要以数学史为基础,充分培养学生自主学习的能力。 对于大部分的数学概念、定理来说,都是经过推理得到的,但是教材中只是将结果呈现给学生,缺乏推理的过程,因此,教师可以通过数学史的融入,将过程呈现在学生面前,让学生进行充分的联想、分析及观察,提升学习的兴趣,引导学生主动探究。
4.4 利用历史上的名题
在数学史中蕴含了大量的名题, 这些名题教师可以直接拿来教学,比如希腊三大几何难题、《九章算术》中的应用题等。 通过历史名题的教学, 可以让学生很好地掌握数学思想及数学方法,并培养出学生的创造性思维,提升学生利用数学知识解决实际问题的能力。
4.5 利用历史上的逸闻趣事
在选择数学史内容时,除了注重知识性之外,还要具备趣味性,因此,在教学中,教师可以将一些数学家的成长过程、逸闻趣事等介绍给学生听。很多的数学家成长过程都是比较坎坷的,教师将数学家的这些经历介绍给学生, 不仅可以帮助学生建立克服困难的信心,还可以激励学生励志学好数学。
传统的中学数学教学只是单纯的传授数学知识, 这不利于学生数学思维的培养,学生也无法掌握数学思想,从而降低学生利用数学知识解决实际问题的能力。为了有效的改善这个问题,在数学教学中应用了数学史,让学生了解数学概念、定理、法则、公式等内容的演变过程,从而使学生更好的掌握数学方法,学会学习数学,真正的提高自身的数学思维及数学能力。
参考文献:
[1]缪 希学。试谈数学史在中学数学教学中的应用[J].陇 东学院学报,2010,(05):123-124.
[2]陶良胜。浅谈数学史教育在中学数学教学中的作用[J].宿州教育学院学报,2011,(03):75-76.
[3]亥仁古力·麦麦提。数学史在中学数学教育中的价值体现[J].河北北方学院学报(自然科学版),2011,(04):20-22+31.
[4]肖敏芳。浅谈数学史在大学数学教学中的应用[J].科教文汇(上旬刊),2014,(11):39-40.
[5]王传利,薄艳玲。关于数学史融入中学数学教学的思考[J].湖南第一师范学院学报,2014,(03):29-33.