学习啦>论文大全>技术论文>

plc应用技术论文

家文分享

  有些网友觉得plc应用技术论文难写,可能是因为没有思路,所以小编为大家带来了相关的例文,希望能帮到大家!

  plc应用技术论文篇一

  PCL应用技术

  题目:PLC实现变频调速器多电机控制实训报告

  目录:

  一、 PCL的工作原理

  二、 PCL的应用领域和特点

  三、 PCL的控制对象及连接安装

  四、 如何让PCL变频器实现多电机控制

  五、 PCL在使用中应注意的问题及解决方案

  六、 实训总结

  一、 PCL的工作原理

  PLC是采用“顺序扫描、不断循环”的方式进行工作的。即PLC运行时,CPU根据用户按控制要求编制好并存于用户存储器中的程序,按指令步序号(或地址号)作周期性循环扫描。如果无跳转指令,则从第一条指令开始逐条顺序执行用户程序,直到程序结束,然后重新返回第一条指令,开始下一轮新的扫描。在每次扫

  描过程中,还要完成对输入信号的采样和对输出状态的刷新等工作。周而复始。PLC的扫描工作过程可分为输入采样、程序执行和输出刷新三个阶段,并进行周期性循环。

  二、 PCL的应用领域和特点

  1、 目前,PLC在国内外已广泛应用于钢铁、石油、化工、电力、建材、机

  械制造、汽车、轻纺、交通运输、环保及文化娱乐等各个行业,使用情况主要分为如下几类:

  1】.开关量逻辑控制

  取代传统的继电器电路,实现逻辑控制、顺序控制,既可用于单台设备的控制,也可用于多机群控及自动化流水线。如注塑机、印刷机、订书机械、组合机床、磨床、包装生产线、电镀流水线等。

  2】.工业过程控制

  在工业生产过程当中,存在一些如温度、压力、流量、液位和速度等连续变化的量(即模拟量),PLC采用相应的A/D和D/A转换模块及各种各样的控制算法程序来处理模拟量,完成闭环控制。PID调节是一般闭环控制系统中用得较多的一种调节方法。过程控制在冶金、化工、热处理、锅炉控制等场合有非常广泛的应用。

  3】.运动控制

  PLC可以用于圆周运动或直线运动的控制。一般使用专用的运动控制模块,如可驱动步进电机或伺服电机的单轴或多轴位置控制模块,广泛用于各种机械、机床、机器人、电梯等场合。

  4】.数据处理

  PLC具有数学运算(含矩阵运算、函数运算、逻辑运算)、数据传送、数据转换、排序、查表、位操作等功能,可以完成数据的采集、分析及处理。数据处理一般用于如造纸、冶金、食品工业中的一些大型控制系统。

  5】.通信及联网

  PLC通信含PLC间的通信及PLC与其它智能设备间的通信。随着工厂自动化网络的发展,现在的PLC都具有通信接口,通信非常方便。

  2、PLC的应用特点

  1】.可靠性高,抗干扰能力强

  高可靠性是电气控制设备的关键性能。PLC由于采用现代大规模集成电路技术,采用严格的生产工艺制造,内部电路采取了先进的抗干扰技术,具有很高的可靠性。使用PLC构成控制系统,和同等规模的继电接触器系统相比,电气接线及开关接点已减少到数百甚至数千分之一,故障也就大大降低。此外,PLC带有硬件故障自我检测功能,出现故障时可及时发出警报信息。在应用软件中,应用者还可以编入外围器件的故障自诊断程序,使系统中除PLC以外的电路及设备也获得故障自诊断保护。这样,整个系统将极高的可靠性。

  2】.配套齐全,功能完善,适用性强

  PLC发展到今天,已经形成了各种规模的系列化产品,可以用于各种规模的工业控制场合。除了逻辑处理功能以外,PLC大多具有完善的数据运算能力,可用于各种数字控制领域。多种多样的功能单元大量涌现,使PLC渗透到了位置控制、温度控制、CNC等各种工业控制中。加上PLC通信能力的增强及人机界面技术的发展,使用PLC组成各种控制系统变得非常容易。

  3】.易学易用,深受工程技术人员欢迎

  PLC是面向工矿企业的工控设备。它接口容易,编程语言易于为工程技术人员接受。梯形图语言的图形符号与表达方式和继电器电路图相当接近,为不熟悉电子电路、不懂计算机原理和汇编语言的人从事工业控制打开了方便之门。 4】.系统的设计,工作量小,维护方便,容易改造

  PLC用存储逻辑代替接线逻辑,大大减少了控制设备外部的接线,使控制系统设计及建造的周期大为缩短,同时日常维护也变得容易起来,更重要的是使同一设备经过改变程序而改变生产过程成为可能。这特别适合多品种、小批量的生产场合。

  三、 PCL的控制对象 1、PCL变频器对多电机的控制对象

  1】通过输出开关量,即输出控制通断信号,比如通过控制小继电器通断来控制交流接触器的线圈得电与否,从而控制接触器连接的主电路通断。

  2】、通过输出模拟信号,比如0-20mA、4-20mA、 0-5V、 0-10V等,把这些信号送到现场的仪器仪表进行控制,例如带电子定位器的气动阀门的开关等。

  3】、通过输出数字信号,通过通讯线路与仪表电器连接进行控制,比如把变频器通过RS485通讯接口相连,再进行通讯参数设置就能通过PLC直接控制变频器,从而控制现场电机。

  4】、现场许多接触器的吸合与否通过辅助触点的通断,把这个通断信号送入PLC,那么这个通断信号就能被PLC利用通过编程运行程序来输出开关量来控制其他设备。这个信号也可被PLC接收并传给与之通讯连接的电脑,用来监控这个接触器控制的设备运行与否。现场许多传感器测得的信号也类似的被传送给PLC,这些信号先被转换成数字信号即A/D转换,再由CPU处理,通过一定的程序(可人为编制)换算,再输出某个阀门的通断信号或模拟控制信号等。数字信号,则直接输入PLC处理后输出,如果要输出模拟信号则要先由PLC固定模块进行D/A转换后再输出。PLC它的核心CPU处理的是数字信号(二进制),我们可以把它看成是成千上万个电子版小继

  电器(包括时间继电器、电流继电器等)的高集成体,把这些个小继电器的通断看成数字信号,比如小继电器接通为1,断开为0。而模拟信号和数字信号输出则是因为另外添加了信号转换电路和接口电路的结果。它的自动化,就是通过编写PLC可以运行识别的程序语言,对其内的“小继电器”按工厂生产要求进行排列组合设计,控制他们的通断,程序一经运行,就不要认为再去操作,人只要给主电路上的开关都打开,把关键控制点留给PLC就可以了。

  2、PCL的链接安装

  1】 动力线、控制线以及PLC的电源线和I/O线应分别配线,隔离变压器与PLC和I/O之间应采用双胶线连接。将PLC的IO线和大功率线分开走线,如必须在同一线槽内,分开捆扎交流线、直流线,若条件允许,分槽走线最好,这不仅能使其有尽可能大的空间距离,并能将干扰降到最低限度。

  2】 PLC应远离强干扰源如电焊机、大功率硅整流装置和大型动力设备,不能与高压电器安装在同一个开关柜内。在柜内PLC应远离动力线(二者之间距离应大于200mm)。与PLC装在同一个柜子内的电感性负载,如功率较大的继电器、接触器的线圈,应并联RC消弧电路。

  3】 PLC的输入与输出最好分开走线,开关量与模拟量也要分开敷设。模拟量信号的传送应采用屏蔽线,屏蔽层应一端或两端接地,接地电阻应小于屏蔽层电阻的1/10.

  4】交流输出线和直流输出线不要用同一根电缆,输出线应尽量远离高压线和动力线,避免并行。

  5】I/O端的接线输入接线

  ● 输入接线一般不要太长。但如果环境干扰较小,电压降不大时,输入接线可适当长些。

  ● 输入/输出线不能用同一根电缆,输入/输出线要分开。

  ● 尽可能采用常开触点形式连接到输入端,使编制的梯形图与继电器原理图一致,便于阅读。

  输出连接

  ● 输出端接线分为独立输出和公共输出。在不同组中,可采用不同类型和电压等级的输出电压。但在同一组中的输出只能用同一类型、同一电压等级的电源。

  ● 由于PLC的输出元件被封装在印制电路板上,并且连接至端子板,若将连接输出元件的负载短路,将烧毁印制电路板。

  ● 采用继电器输出时,所承受的电感性负载的大小,会影响到继电器的使用寿命,因此,使用电感性负载时应合理选择,或加隔离继电器。

  ● PLC的输出负载可能产生干扰,因此要采取措施加以控制,如直流输出的续流管保护,交流输出的阻容吸收电路,晶体管及双向晶闸管输出的旁路电阻保护。

  四、如何让PCL变频器实现多电机控制

  1、在传统的传动系统中,要保证多个执行元件间速度的一定关系,其中包括保证其间的速度同步或具有一定的速比,常采用机械传动刚性联接装置来实现。但有时若多个执行元件间的机械传动装置较大,执行元件间的距离较远时,就只得考虑采用独立控制的非刚性联接传动方法。主不分从,各电动机的轴端均套装码器及各变频器中加装测速反馈选件卡FR—A5AP,并将编码器输出端与测速反馈选件卡输入端相连,使每台电动机和编码器各自构成闭环装置,可按照它们不同的速度增益比例同时给予变频器主速设定,产同时起动和停止。虽然在系统中相对独立,并无负载上的关联,但由于同时给定主速信号,在此大前提下,可根据各自的负载情况进行闭环型的速度调整,也能达到多台同速的要求。(此方法仅限于A500系列产品)

  2、电机的正反控制

  1】.开关量控制:将PLC的输出触点与变频器的正转,反转,高速,中速,低速触点连接,再在变频器上设置高中低档频率,用PLC直接控制这些触点的闭开即可。

  2】.模拟量控制,将PLC的输出触点与变频器的电流输入或电压输入触点连接,再在PLC上设置电压或电流再用D/A转换即可调节频率,正反转就是正负电平。

  3】.现场总线:使用CCLINK现场总线。

  旋转编码器的使用:旋转编码器一般是测量电机速度用的,使用带晶体管接口的PLC,将编码器接近开关信号输入到PLC高速输入接口,再在PLC内编制相关程序,即可算出当前速度,与所需速度比较,以便及时调整。

  五、PCL在使用中应注意的问题及解决方案

  可编程控制器在工业控制领域的应用以及PLC在应用过程中,要保证正常运行应该注意的一系列问题,PLC是一种用于工业生产自动化控制的设备,一般不需要采取什么措施,就可以直接在工业环境中使用。然而,尽管有如上所述的可靠性较高,抗干扰能力较强,但当生产环境过于恶劣,电磁干扰特别强烈,或安装使用不当,就可能造成程序错误或运算错误,从而产生误输入并引起误输出,这将会造成设备的失控和误动作,从而不能保证PLC的正常运行,要提高PLC控制系统可靠性,一方面要求PLC生产厂家提高设备的抗干扰能力;另一方面,要求设计、安装和使用维护中引起高度重视,多方配合才能完善解决问题,有效地增强系统的抗干扰性能。因此在使用中应注意以下问题:

  1.工作环境

  (1)温度

  PLC要求环境温度在0~55oC,安装时不能放在发热量大的元件下面,四周通风散热的空间应足够大。

  (2)湿度

  为了保证PLC的绝缘性能,空气的相对湿度应小于85%(无凝露)。

  (3)震动

  应使PLC远离强烈的震动源,防止振动频率为10~55Hz的频繁或连续振动。当使用环境不可避免震动时,必须采取减震措施,如采用减震胶等。

  (4)空气

  避免有腐蚀和易燃的气体,例如氯化氢、硫化氢等。对于空气中有较多粉尘或腐蚀性气体的环境,可将PLC安装在封闭性较好的控制室或控制柜中。

  (5)电源

  PLC对于电源线带来的干扰具有一定的抵制能力。在可靠性要求很高或电源干扰特别严重的环境中,可以安装一台带屏蔽层的隔离变压器,以减少设备与地之间的干扰。一般PLC都有直流24V输出提供给输入端,当输入端使用外接直流电源时,应选用直流稳压电源。因为普通的整流滤波电源,由于纹波的影响,容易使PLC接收到错误信息。

  2.控制系统中干扰及其来源

  现场电磁干扰是PLC控制系统中最常见也是最易影响系统可靠性的因素之一,所谓治标先治本,找出问题所在,才能提出解决问题的办法。因此必须知道现场干扰的源头。(1)干扰源及一般分类

  影响PLC控制系统的干扰源,大都产生在电流或电压剧烈变化的部位,其原因是电流改变产生磁场,对设备产生电磁辐射;磁场改变产生电流,电磁高速产生电磁波。通常电磁干扰按干扰模式不同,分为共模干扰和差模干扰。共模干扰是信号对地的电位差,主要由电网串入、地电位差及空间电磁辐射在信号线上感应的共态(同方向)电压叠加所形成。共模电压通过不对称电路可转换成差模电压,直接影响测控信号,造成元器件损坏(这就是一些系统I/O模件损坏率较高的主要原因),这种共模干扰可为直流,亦可为交流。差模干扰是指作用于信号两极间的干扰电压,主要由空间电磁场在信号间耦合感应及由不平衡电路转换共模干扰所形成的电压,这种干扰叠加在信号上,直接影响测量与控制精度。 (2)PLC系统中干扰的主要来源及途径

  1.强电干扰

  PLC系统的正常供电电源均由电网供电。由于电网覆盖范围广,它将受到所有空间电磁干扰而在线路上感应电压。尤其是电网内部的变化,刀开关操作浪涌、大型电力设备起停、交直流传动装置引起的谐波、电网短路暂态冲击等,都通过输电线路传到电源原边。

  2.柜内干扰

  控制柜内的高压电器,大的电感性负载,混乱的布线都容易对PLC造成一定程度的干扰。

  1】来自信号线引入的干扰

  与PLC控制系统连接的各类信号传输线,除了传输有效的各类信息之外,总会有外部干扰信号侵入。此干扰主要有两种途径:一是通过变送器供电电源或共用信号仪表的供电电源串入的电网干扰,这往往被忽视;二是信号线受空间电磁辐射感应的干扰,即信号线上的外部感应干扰,这是很严重的。由信号引入干扰会引起I/O信号工作异常和测量精度大大降低,严重时将引起元器件损伤。 2】来自接地系统混乱时的干扰

  接地是提高电子设备电磁兼容性(EMC)的有效手段之一。正确的接地,既能抑制电磁干扰的影响,又能抑制设备向外发出干扰;而错误的接地,反而会引入严重的干扰信号,使PLC系统将无法正常工作。

  3】来自PLC系统内部的干扰

  主要由系统内部元器件及电路间的相互电磁辐射产生,如逻辑电路相互辐射及其对模拟电路的影响,模拟地与逻辑地的相互影响及元器件间的相互不匹配使用等。

  4】变频器干扰

  一是变频器启动及运行过程中产生谐波对电网产生传导干扰,引起电网电压畸变,影响电网的供电质量;二是变频器的输出会产生较强的电磁辐射干扰,影响周边设备的正常工作。

  3.主要抗干扰措施

  电源的合理处理,抑制电网引入的干扰

  对于电源引入的电网干扰可以安装一台带屏蔽层的变比为1:1的隔离变压器,以减少设备与地之间的干扰,还可以在电源输入端串接LC滤波电路。

  (4)正确选择接地点,完善接地系统

  良好的接地是保证PLC可靠工作的重要条件,可以避免偶然发生的电压冲击危害。接地的目的通常有两个,其一为了安全,其二是为了抑制干扰。完善的接地系统是PLC控制系统抗电磁干扰的重要措施之一。

  PLC控制系统的地线包括系统地、屏蔽地、交流地和保护地等。接地系统混乱对PLC系统的干扰主要是各个接地点电位分布不均,不同接地点间存在地电位差,引起地环路电流,影响系统正常工作。例如电缆屏蔽层必须一点接地,如果电缆屏蔽层两端A、B都接地,就存在地电位差,有电流流过屏蔽层,当发生异常状态如雷击时,地线电流将更大。

  此外,屏蔽层、接地线和大地有可能构成闭合环路,在变化磁场的作用下,屏蔽层内又会出现感应电流,通过屏蔽层与芯线之间的耦合,干扰信号回路。若系统地与其它接地处理混乱,所产生的地环流就可能在地线上产生不等电位分布,影响PLC内逻辑电路和模拟电路的正常工作。PLC工作的逻辑电压干扰容限较低,逻辑地电位的分布干扰容易影响PLC的逻辑运算和数据存贮,造成数据混乱、程序跑飞或死机。模拟地电位的分布将导致测量精度下降,引起对信号测控的严重失真和误动作。

  ● 安全地或电源接地

  将电源线接地端和柜体连线接地为安全接地。如电源漏电或柜体带电,可从安全接地导入地下,不会对人造成伤害。

  ● 系统接地

  PLC控制器为了与所控的各个设备同电位而接地,叫系统接地。接地电阻值不得大于4Ω,一般需将PLC设备系统地和控制柜内开关电源负端接在一起,作为控制系统地。

  ● 信号与屏蔽接地

  一般要求信号线必须要有唯一的参考地,屏蔽电缆遇到有可能产生传导干扰的场合,也要在就地或者控制室唯一接地,防止形成“地环路”。信号源接地时,屏蔽层应在信号侧接地;不接地时,应在PLC侧接地;信号线中间有接头时,屏蔽层应牢固连接并进行绝缘处理,一定要避免多点接地;多个测点信号的屏蔽双绞线与多芯对绞总屏蔽电缆连接时,各屏蔽层应相互连接好,并经绝缘处理,选择适当的接地处单点接点。

  5)对变频器干扰的抑制

  变频器的干扰处理一般有下面几种方式:

  加隔离变压器,主要是针对来自电源的传导干扰,可以将绝大部分的传导干扰阻隔在隔离变压器之前。

  使用滤波器,滤波器具有较强的抗干扰能力,还具有防止将设备本身的干扰传导给电源,有些还兼有尖峰电压吸收功能。

  使用输出电抗器,在变频器到电动机之间增加交流电抗器主要是减少变频器输出在能量传输过程中线路产生电磁辐射,影响其它设备正常工作。

  4、控制系统可靠性降低的主要原因

  虽然工业控制机和可编程控制器本身都具有很高的可靠性,但如果输入给PLC的开关量信号出现错误,模拟量信号出现较大偏差,PLC输出口控制的执行机构没有按要求动作,这些都可能使控制过程出错,造成无法挽回的经济损失。

  影响现场输入给PLC信号出错的主要原因有:

  1)造成传输信号线短路或断路(由于机械拉扯,线路自身老化,特别是鼠害),当传输信号线出故障时,现场信号无法传送给PLC,造成控制出错;

  2)机械触点抖动,现场触点虽然只闭合一次,PLC却认为闭合了多次,虽然硬件加了滤波电路,软件增加微分指令,但由于PLC扫描周期太短,仍可能在计数、累加、移位等指令中出错,出现错误控制结果;

  3)现场变送器,机械开关自身出故障,如触点接触不良,变送器反映现场非电量偏差较大或不能正常工作等,这些故障同样会使控制系统不能正常工作。 影响执行机构出错的主要原因有:

  1)控制负载的接触不能可靠动作,PLC发出了动作指令,但执行机构并没按要求动作;

  2)控制变频器起动,由于变频器自身故障,变频器所带电机并没按要求工作;

  3)各种电动阀、电磁阀该开的没能打开,该关的没能关到位,由于执行机构没能按PLC的控制要求动作,使系统无法正常工作,降低了系统可靠性。要提高整个控制系统的可靠性,必须提高输入信号的可靠性和执行机构动作的准确性,否则PLC应能及时发现问题,用声光等报警办法提示给操作人员,尽快排除故障,让系统安全、可靠、正确地工作。

  5、设计完善的故障报警系统

  在自动控制系统的设计中我们设计了3级故障显示报警系统,1级设置在控制现场各控制柜面板,用指示灯指示设备正常运行和故障情况,当设备正常运行时对应指示灯亮,当该设备运行有故障时指示灯以1Hz的频率闪烁。

  为防止指示灯灯泡损坏不能正确反映设备工作情况,专门设置了故障复位/灯测试按钮,系统运行任何时间持续按该按钮,所有指示灯应全部点亮,如果这时有指示等不亮说明该指示灯已坏,应立即更换,改按钮复位后指示灯仍按原工作状态显示设备工作状态。

  2级故障显示设置在中心控制室大屏幕监视器上,当设备出现故障时,有文字显示故障类型,工艺流程图上对应的设备闪烁,历史事件表中将记录该故障。 3级故障显示设置在中心控制室信号箱内,当设备出现故障时,信号箱将用声、光报警方式提示工作人员,及时处理故障。在处理故障时,又将故障进行分类,有些故障是要求系统停止运行的,但有些故障对系统工作影响不大,系统可带故障运行,故障可在运行中排除,这样就大大减少整个系统停止运行时间,提高系统可靠性运行水平。输入信号可靠性研究

  要提高现场输入给信号的可靠性,首先要选择可靠性较高的变送器和各种开关,防止各种原因引起传送信号线短路、断路或接触不良。其次在程序设计时增加数字滤波程序,增加输入信号的可信性。

  在现场输入触点后加一定时器,定时时间根据触点抖动情况和系统要的响应速度确定,一般在几十ms,这样可保证触点确实稳定闭合后,才有其它响应。模拟信号滤波可采用程序设计方法,对现场模拟信号连续采样次,采样间隔由转换速度和该模拟信号变化速率决定。次采样数据分别存放在数据寄存器中,当最后次采样结束后利用数据比较、数据交换指令、数据段比较指令去掉最大和最小值,保留中间值作为本次采样结果存放在数据寄存器中

  提高读入现场信号的可靠性还可利用控制系统自身特点,利用信号之间关系来判断信号的可信程度。如进行液位控制,由于储罐的尺寸是已知的,进液或出液的阀门开度和压力是已知的,在一定时间里罐内液体变化高度大约在什么范围是知道的,如果这时液位计送给PLC的数据和估算液位高度相差较大,判断可能是液位计故障,通过故障报警系统通知操作人员检查该液位计。又如各储罐有上下液位极限保护,当开关动作时发出信号给,这个信号是否真实可靠,在程序设计时我们将这信号和该罐液位计信号对比,如果液位计读数也在极限位置,说明该信号是真实的;如果液位计读数不在极限位置,判断可能是液位极限开关故障或传送信号线路故障,同样通过报警系统通知操作人员处理该故障。由于在程序设计时采用了上述方法,大大提高了输入信号的可靠。

  七、 实训总结

  在这段时间的学习和实践中,掌握了PCL变频器控制的使用方法及特点、使用环境、安装调试,在工作中出现的问题怎么解决,为以后工作打下了基础,同时也感谢公司为我们实习创造了条件,在实训工作中叶得到了锻炼,以后能更好的为公司服务,创造出更好的经济效益。

  plc应用技术论文篇二

  一、摘要 PLC是一种专门在工业环境下应用而设计的数字运算操作的电子装置。它采用可以编制程序的存储器,用来在其内部存储执行逻辑运算、顺序运算、计时、计数和算术运算等操作的指令,并能通过数字式或模拟式的输入和输出,控制各种类型的机械或生产过程。PLC及其有关的外围设备都应按照易于与工业控制系统形成一个整体,易于扩展其功能的原则而设计。在工业生产的各个领域,机械加工企业为了提高生产效率,采用机械化流水作业的方式,对不同类型的零件分别组成的自动生产线。随着产品机型的更新换代,生产线承担的加工对象也随之改变,这就需要改变控制程序,使生产线的机械设备按新的工艺过程运行,而继电接触器控制器系统是采用固定接线,很难适应这个要求,大型自动生产线的控制系统使用的继电器数量很多,随着PLC的应用日益普及,其使用方法简单,便于掌握,且可靠性极高,抗干扰性很强,自身具有完善的功能.模块化的结构,使其在工业生产线上的应用越来越广泛。

  发展趋势:1.向高速度、大容量方向发展

  为了提高PLC的处理能力,要求PLC具有更好的响应速度和更大的存储容量。目前,有的PLC的扫描速度可达0.1ms/k步左右。PLC的扫描速度已成为很重要的一个性能指标。

  在存储容量方面,有的PLC最高可达几十兆字节。为了扩大存储容量,有的公司已使用了磁泡存储器或硬盘。

  2.向超大型、超小型两个方向发展

  当前中小型PLC比较多,为了适应市场的多种需要,今后PLC要向多品种方向发展,特别是向超大型和超小型两个方向发展。现已有I/O点数达14336点的超大型PLC,其使用32位微处理器,多CPU并行工作和大容量存储器,功能强。

  小型PLC由整体结构向小型模块化结构发展,使配置更加灵活,为了市场需要已开发了各种简易、经济的超小型微型PLC,最小配置的I/O点数为8~16点,以适应单机及小型自动控制的需要,如三菱公司α系列PLC。其共同特点是,现代PLC的结构和功能不断改进,产品更新换代周期越来越短,并不断地向高性能、高速度、高性能价格比方向发展。

  3.PLC大力开发智能模块,加强联网通信能力

  为满足各种自动化控制系统的要求,近年来不断开发出许多功能模块,如高速计数模块、温度控制模块、远程I/O模块、通信和人机接口模块等。这些带CPU和存储器的智能I/O模块,既扩展了PLC功能,又使用灵活方便,扩大了PLC应用范围。

  加强PLC联网通信的能力,是PLC技术进步的潮流。PLC的联网通信有两类:一类是PLC之间联网通信,各PLC生产厂家都有自己的专有联网手段;另一类是PLC与计算机之间的联网通信,一般PLC都有专用通信模块与计算机通信。为了加强联网通信能力,PLC生产厂家之间也在协商制订通用的通信标准,以构成更大的网络系统,PLC已成为集散控制系统(DCS)不可缺少的重要组成部分。

  4.增强外部故障的检测与处理能力

  根据统计资料表明:在PLC控制系统的故障中,CPU占5%,I/O接口占15%,输入设备占45%,输出设备占30%,线路占5%。前二项共20%故障属于PLC的内部故障,它可通过PLC本身的软、硬件实现检测、处理;而其余80%的故障属于PLC的外部故障。因此,PLC生产厂家都致力于研制、发展用于检测外部故障的专用智能模块,进一步提高系统的可靠性。

  5.编程语言多样化

  在PLC系统结构不断发展的同时,PLC的编程语言也越来越丰富,功能也不断提高。除了大多数PLC使用的梯形图语言外,为了适应各种控制要求,出现了面向顺序控制的步进编程语言、面向过程控制的流程图语言、与计算机兼容的高级语言(BASIC、C语言等)等。多种编程语言的并存、互补与发展是PLC进步的一种趋势。

  关键词:PLC、应用、逻辑控制电路

  二、结构 PLC 实质是一种专用于工业控制的计算机其硬件结构基本上与微型计算机从结构上分,PLC分为固定式和组合式(模块式)两种。固定式PLC包括CPU板、I/O板、显示面板、内存块、电源等,这些元素组合成一个不可拆卸的整体。模块式PLC包括CPU模块、I/O模块、内存、电源模块、底板或机架,这些模块可以按照一定规则组合配置。

  (1)中央处理单元(CPU)

  中央处理单元(CPU)是PLC 的控制中枢,它按照PLC 系统程序赋予的功能接收并存储从编程器键入的用户程序和数据、检查电源、存储器I/O以及警戒定时器的状态;并能诊断用户程序中的语法错误。当PLC 投入运行时,首先它以扫描的方式接收现场各输入装置的状态和数据,并分别存入I/O 映象区,然后从用户程序存储器中逐条读取用户程序,经过命令解释后,按指令的规定执行逻辑或算数运算的结果送入I/O 映象区或数据寄存器内,等所有的用户程序执行完毕之后,最后将I/O 映象区的各输出状态或输出寄存器内的数据传送到相应的输出装置,如此循环运行直到停止运行。为了进一步提高PLC 的可靠性近年来 对大型PLC 还采用双CPU 构成冗余系统或采用三CPU 的表决式系统,这样即使某个CPU 出现故障整个系统仍能正常运行。

  CPU是PLC的核心,起神经中枢的作用,每套PLC至少有一个CPU,它按PLC的系统程序赋予的功能接收并存贮用户程序和数据,用扫描的方式采集由现场输入装置送来的状态或数据,并存入规定的寄存器中,同时,诊断电源和PLC内部电路的工作状态和编程过程中的语法错误等。进入运行后,从用户程序存贮器中逐条读取指令,经分析后再按指令规定的任务产生相应的控制信号,去指挥有关的控制电路。

  CPU主要由运算器、控制器、寄存器及实现它们之间联系的数据、控制及状态总线构成,CPU单元还包括外围芯片、总线接口及有关电路。内存主要用于存储程序及数据,是PLC不可缺少的组成单元。

  在使用者看来,不必要详细分析CPU的内部电路,但对各部分的工作机制还是应有足够的理解。CPU的控制器控制CPU工作,由它读取指令、解释指令及执行指令。但工作节奏由震荡信号控制。运算器用于进行数字或逻辑运算,在控制器指挥下工作。寄存器参与运算,并存储运算的中间结果,它也是在控制器指挥下工作。

  CPU速度和内存容量是PLC的重要参数,它们决定着PLC的工作速度,IO数量及软件容量等,因此限制着控制规模。

  (2) 存储器

  存放系统软件的存储器称为系统程序存储器;存放应用软件的存储器称为用户程序存储器。

  1.PLC 常用的存储器类型

  (1) RAM (Random Assess Memory),这是一种读/写存储器(随机存储器) ,其存取速度最快,由锂电池支持。

  (2) EPROM (Erasable Programmable Read Only Memory),这是一种可擦除的只读存储器,在断电情况下存储器内的所有内容保持不变(在紫外线连续照射下可擦除存储器内容)。

  (3) EEPROM(Electrical Erasable Programmable Read Only Memory),这是一种电可擦除的只读存储器,使用编程器就能很容易地对其所存储的内容进行修改。

  2.PLC 存储空间的分配 虽然各种PLC 的CPU 的最大寻址空间各不相同,但是根据PLC 的工作原理其存储空间一般包括以下三个区域:系统程序存储区;系统RAM 存储区(包括I/O 映象区和系统软设备等);用户程序存储区。

  (1)系统程序存储区

  在系统程序存储区中存放着相当于计算机操作系统的系统程序,包括监控程序、管理程序、命令解释程序、功能子程序、系统诊断子程序、等由制造厂商将其固化在EPROM 中,用户不能直接存取,它和硬件一起决定了该PLC 的性能。

  (2)系统RAM 存储区

  系统RAM 存储区包括I/O 映象区以及各类软设备如:逻辑线圈、数据寄存器、计时器、计数器、变址寄存器、累加器、等存储器。

  I/O 映象区,由于PLC 投入运行后只是在输入采样阶段才依次读入各输入状态和数据在输出刷新阶段才将输出的状态和数据送至相应的外设,因此它需要一定数量的存储单元(RAM)以存放I/O 的状态和数据,这些单元称作I/O 映象区,一个开关量I/O 占用存储单元中的一个位(bit),一个模拟量I/O 占用存储单元中的一个字(16 个bit), 因此整个I/O 映象区可看作两个部分组成:开关量I/O 映象区,模拟量I/O 映象区。

  系统软设备存储区除了I/O 映象区区以外,系统RAM 存储区还包括PLC 内部各类软设备(逻辑线圈、计时器、计数器、数据寄存器和累加器等)的存储区,该存储区又分为具有失电保持的存储区域和无失电保持的存储区域,前者在PLC 断电时由内部的锂电池供电,数据不会遗失,后者当PLC 断电时数据被清零

  1) 逻辑线圈

  与开关输出一样,每个逻辑线圈占用系统RAM 存储区中的一个位,但不能直接驱动外设,只供用户在编程中使用,其作用类似于电器控制线路中的继电器,另外不同的PLC 还提供数量不等的特殊逻辑线圈,具有不同的功能。

  2) 数据寄存器

  与模拟量I/O 一样,每个数据寄存器占用系统RAM 存储区中的一个字(16bits) ,另外PLC 还提供数量不的特殊数据寄存器,具有不同的功能。

  3) 计时器

  4) 计数器

  (3) 用户程序存储区 用户程序存储区存放用户编制的用户程序,不同类型的PLC 其存储容量各不相同。

  (3) 电源

  PLC 的电源在整个系统中起着十分重要得作用。如果没有一个良好的可靠得电源系统是无法正常工作的,因此PLC 的制造商对电源的设计和制造也十分重视,一般交流电压波动在+10%(+15%)范围内可以不采取其它措施,而将PLC 直接连接到交流电网上去。

  (4) I/O 模块

  PLC与电气回路的接口,是通过输入输出部分(I/O)完成的。I/O模块集成了PLC的I/O电路,其输入暂存器反映输入信号状态,输出点反映输出锁存器状态。输入模块将电信号变换成数字信号进入PLC系统,输出模块相反。I/O分为开关量输入(DI),开关量输出(DO),模拟量输入(AI),模拟量输出(AO)等模块。

  常用的I/O分类如下:

  1.开关量:按电压水平分,有220VAC、110VAC、24VDC,按隔离方式分,有继电器隔离和晶体管隔离。

  2.模拟量:按信号类型分,有电流型(4-20mA,0-20mA)、电压型(0-10V,0-5V,-10-10V)等,按精度分,有12bit,14bit,16bit等。

  3.除了上述通用IO外,还有特殊IO模块,如热电阻、热电偶、脉冲等模块。

  4.按I/O点数确定模块规格及数量,I/O模块可多可少,但其最大数受CPU所能管理的基本配置的能力,即受最大的底板或机架槽数限制。

  (5)PLC系统的其它设备

  编程设备:编程器是PLC开发应用、监测运行、检查维护不可缺少的器件,用于编程、对系统作一些设定、监控PLC及PLC所控制的系统的工作状况,但它不直接参与现场控制运行。小编程器PLC一般有手持型编程器,目前一般由计算机(运行编程软件)充当编程器。也就是我们系统的上位机。

  人机界面:最简单的人机界面是指示灯和按钮,目前液晶屏(或触摸屏)式的一体式操作员终端应用越来越广泛,由计算机(运行组态软件)充当人机界面非常普及。

  三、PLC特点

  作为一种新型的工业自动控制装置,PLC有以下一些特点。

  1.高可靠性和强抗干扰能力

  高可靠性和强抗干扰能力是PLC最突出的特点之一,主要表现在:用软件代替传统继电器控制系统中大量的中间继电器和时间继电器,仅剩下与输入和输出有关的少量硬件,接线大大减少,因触点接触不良造成的故障大为减少;所有的I/O接口电路均采用光电隔离,使工业现场的外电路与PLC内部电路之间电气上隔离;各输入端均采用RC滤波器,并采取屏蔽措施;采用性能优良的开关电源;对采用的器件进行严格的筛选;良好的自诊断功能,一旦电源或其他软、硬件发生异常情况,CPU立即采用有效措施,以防故障扩大;大型PLC还可以采用由双CPU构成冗余系统或3个CPU构成的表决系统,使可靠性更进一步增强。

  2.丰富的I/O接口模块

  为了实现与工业生产过程控制中的各种工业现场设备的相互连接,PLC除具有普通计算机的基本部分(如CPU、存储器等)外,还有丰富的I/O接口模块。对不同的工业现场信号(交流或直流、开关量或模拟量、电压或电流、脉冲或电位、强电或弱点等),设计有相应的I/O模块与工业现场的器件或设备(按钮、行程开关、接近开关、传感器及变送器、电磁线圈、控制阀等)直接连接就。

  3.灵活性

  为了适应各种工业控制需要,除了一些小型PLC以外,绝大多数PLC均采用模块化结构。PLC的各个部件,包括CPU、电源、I/O等均采用模块化设计,由机架及电缆将各模块连接起来,系统的规模和功能可根据用户的需要自行组合。

  相对于传统的电气控制线路,PLC为改进和修改原设备提供了极其方便的手段,通过修改或重新编写应用软件,就可以用一台PLC实现不同的控制功能。

  4.编程简单易学

  PLC大多数用梯形图作为主要的编程语言。梯形图是一种面向用户的编程语言,它的表达方式类似于继电器控制系统电路图,具有形象直观、易学易懂的特点。

  5.系统安装简单,维修方便

  PLC不需要专门的机房,可以在各种工业环境下直接运行。使用时只需将现场的各种设备与PLC相应的I/O端相连接,即可投入运行。

  PLC的各种模块上大多都有运行和故障指示装置,便于用户了解运行情况和查找故障。由于采用模块化结构,因此一旦某模块发生故障,用户可以通过更换模块的方法,使系统迅速恢复运行。

  四、应用

  由于PLC自身的特点和优势,在工业控制中PLC以得到了广泛应用,包括机械、冶金、化工、运输、建筑等众多领域,应用范围也在不断扩大。PLC主要的应用领域包括以下几个方面。

  1. 逻辑控制

  逻辑控制室PLC最基本的应用,它可以取代传统的继电器控制装置,如机床电气控制、各种电机控制等,可实现组合逻辑控制、定时控制和顺序逻辑控制等功能。

  2. 运动控制

  PLC使用专用的运动控制模块,可对直线运动或圆周运动的位置、速度和加速度进行控制,实现单轴、双轴和多轴位置的控制,使运动控制和顺序控制功能有机的结合在一起。

  3. 过程控制

  过程控制是指对温度、压力、流量等模拟量的闭环控制。作为工业控制计算机,PLC能编制各种各样的控制算法程序,完成闭环控制。PID调节是一般闭环控制系统中用得较多的调节方法。大中型PLC都有PID模块,目前许多小型PLC也具有此功能模块。PID处理一般是运行专用的PID子程序。过程控制在冶金、化工、热处理、锅炉控制等场合有非常广泛的应用。

  4.通信联网

  PLC通信含PLC间的通信及PLC与其它智能设备间的通信。随着计算机控制的发展,工厂自动化网络发展得很快,各PLC厂商都十分重视PLC的通信功能,纷纷推出各自的网络系统。新近生产的PLC都具有通信接口,通信非常方便。

  5. 数据处理

  现代PLC具有数学运算(含矩阵运算、函数运算、逻辑运算)、数据传送、数据转换、排序、查表、位操作等功能,可以完成数据的采集、分析及处理。这些数据可以与存储在存储器中的参考值比较,完成一定的控制操作,也可以利用

  通信功能传送到别的智能装置,或将它们打印制表。数据处理一般用于大型控制系统,如无人控制的柔性制造系统;也可用于过程控制系统,如造纸、冶金、食品工业中的一些大型控制系统。 PLC现已成为工业控制三大支柱(PLC、CAD/CAM、ROBOT)之一,以其可靠性高、逻辑功能强、体积小、可在线修改控制程序、具有远程通信联网功能、以易与计算机接口、能对模拟量进行控制,具备高速计数与位控等性能模块等优异性能,日益取代由大量中间继电器、时间继电器、计数继电器等组成的传统继电—接触控制系统,在机械、化工、石油、冶金、电力、轻工、电子、纺织、食品、交通等行业得到广泛应用。PLC应用深度和广度已经成为一个国家工业先进的重要标志之一。

    2061360