学习啦——历史网>历史人物>其他历史人物>

历史上欧拉是谁

炜基分享

  欧拉是瑞士著名的数学家,是世界最杰出的数学家之一,对数学乃至物理的发展都做出了巨大的贡献。下面是学习啦小编搜集整理的历史上欧拉的简介,希望对你有帮助。

  历史上欧拉的简介

  莱昂哈德·欧拉(Leonhard Euler ,1707年4月15日~1783年9月18日),瑞士数学家、自然科学家。1707年4月15日出生于瑞士的巴塞尔牧师家庭。15岁在巴塞尔大学获学士学位,翌年得硕士学位。1727年,欧拉应圣彼得堡科学院的邀请到俄国。1731年接替丹尼尔·伯努利成为物理教授。他以旺盛的精力投入研究,在俄国的14年中,他在分析学、数论和力学方面作了大量出色的工作。1741年受普鲁士腓特烈大帝的邀请到柏林科学院工作,达25年之久。在柏林期间他的研究内容更加广泛,涉及行星运动、刚体运动、热力学、弹道学、人口学,这些工作和他的数学研究相互推动。1766年他又回到了圣彼得堡。1783年9月18日于俄国圣彼得堡去世。

  欧拉的历史成就

  欧拉每年能写出八百多页的论文,是产量最高的数学家之一,以他的名字来命名的公式、定理有很多。欧拉的成就主要在数学领域,十八世纪被人们称为欧拉世纪,他对数学分析学和微积分的研究相当透彻,偏微分方程、椭圆函数论等著名的论著是数学领域最为重要的内容之一。他的很多研究成果是数论的基础,他还总结了前人对代数学的研究,完成了《代数学入门》这本书,为初学代数的人提供了很好的参考依据,无穷级数、初等函数、单复变函数、微积分学、微分方程,欧拉的成绩几乎覆盖了数学的各个方面。除了数学上的造诣,欧拉在力学、几何学、经济学都取得了不错的成绩,他甚至将音乐和数学结合起来,用数学诠释了音乐的独特之处。

  欧拉的成就不仅仅在学术方面,他还是一个非常优秀的老师,他培养出了另外一个伟大的数学家拉格朗日,据说为了推荐这个天才一般的学生,欧拉将自己的研究成果藏了起来,发表了拉格朗日的论文。在欧拉毫无保留的培养下,拉格朗日成为了数学大师。

  晚年的时候,欧拉双目失明,但这仍然没有阻挡他对数学的热情,他以常人难以想象的毅力坚持研究,让助理帮助他写文章,欧拉的成就有不少是在他失明之后做出来的,实在是让人敬佩不已。

  欧拉的小故事

  虽然欧拉在他所从事的领域里面做出了很多惊人的成就,但是这位大数学家在小学的时候却是个令老师们特别头疼的孩子。他曾经还是个被学校开除过的小学生,欧拉小的时候是在教会里面读的书,有一次他就问老师,天上有多少颗星星。当然,老师肯定是不知道的,但是出于作为一个老师威严,他不懂装懂的而且答非所问的告诉欧拉说星星是上帝镶嵌在上面的。但欧拉又追问上帝是怎么把那么多星星镶上去的,要是弄错了怎么办。老师自然是不知道要怎么去回答他的这个问题,而且欧拉竟然还质疑了万能的上帝。老师很生气,欧拉就这样被勒令回家。

  在家的日子,欧拉一边放羊,一边读书,其中包括了很多数学书。在这一期间,因为羊的数量增加了,父亲想要再建羊圈,但是欧拉却想了个方便又实惠的法子。父亲觉得孩子很聪明,就想方设法让他认识了一位数学家。这位数学家也发现他是个数学方面的小天才,于是通过推荐,欧拉成为了一名年纪最小的大学生。从此之后,欧拉就踏上了他伟大的人生之路。

  欧拉的历史评价

  欧拉是18世纪最优秀的数学家,也是历史上最伟大的数学家之一。十八世纪瑞士数学家和物理学家伦哈特·欧拉始终是世界最杰出的科学家之一。他的全部创造在整个物理学和许多工程领域里都有着广泛的应用。 欧拉的数学和科学成果简直多得令人难以相信。他写了三十二部足本著作,其中有几部不止一卷,还写下了许许多多富有创造性的数学和科学论文。总计起来,他的科学论著有七十多卷。欧拉的天才使纯数学和应用数学的每一个领域都得到了充实,他的数学物理成果有着无限广阔的应用领域。

  早在上一个世纪,艾萨克·牛顿就提出了力学的基本定律。欧拉特别擅长论证如何把这些定律运用到一些常见的物理现象中。例如,他把牛顿定律运用到流体运动,建立了流体力学方程。同样他通过认真分析刚体的可能运动并应用牛顿定律建立了一个可以完全确定刚体运动的方程组。当然在实际中没有物体是完全刚体。欧拉对弹性力学也做出了贡献,弹性力学是研究在外力的作用下固体怎样发生形变的学说。

  欧拉的天才还在于他用数学来分析天文学问题,特别是三体问题,即太阳、月亮和地球在相互引力作用下怎样运动的问题。这个问题──二十一世纪仍要面临的一个问题──尚未得到完全解决。顺便提一下,欧拉是十八世纪独一无二的杰出科学家。他支持光波学说,结果证明他是正确的。

  欧拉丰富的头脑常常为他人做出成名的发现开拓前进的道路。例如,法国数学家和物理学家约瑟夫·路易斯·拉格朗日创建一方程组,叫做“拉格朗日方程”。此方程在理论上非常重要,而且可以用来解决许多力学问题。但是由于基本方程是由欧拉首先提出的,因而通常称为欧拉—拉格朗日方程。一般认为另一名法国数学家让·巴普蒂斯·约瑟夫·傅立叶创造了一种重要的数学方法,叫做傅里叶分析法,其基本方程也是由伦哈特·欧拉最初创立的,因而叫做欧拉—傅里叶方程。这套方程在物理学的许多不同的领域都有着广泛的应用,其中包括声学和电磁学。

  在数学方面他对微积分的两个领域──微分方程和无穷级数──特别感兴趣。他在这两方面做出了非常重要的贡献,但是由于专业性太强不便在此加以叙述。他对变分学和复数学的贡献为后来所取得的一切成就奠定了基础。这两个学科除了对纯数学有重要的意义外,还在科学工作中有着广泛的应用。欧拉公式表明了三角函数和虚数之间的关系,可以用来求负数的对数,是所有数学领域中应用最广泛的公式之一。欧拉还编写了一本解析几何的教科书,对微分几何和普通几何做出了有意义的贡献。

  欧拉不仅在做可应用于科学的数学发明上得心应手,而且在纯数学领域也具备几乎同样杰出的才能。但是他对数论做出的许多贡献非常深奥难懂,不宜在此叙述。欧拉也是数学的一个分支拓扑学领域的先驱,拓扑学在二十世纪已经变得非常重要。

  最后要提到的一点也很重要,欧拉对使用的数学符号制做出了重要的贡献。

历史上欧拉是谁相关文章:

1.数学史最伟大数学家都有谁?

2.有名人的故事

3.高斯人物介绍

4.高考作文素材之名人事例

5.世界上智商最高的人排名 世界上智商最高的人有哪些

6.关于亚历山大大帝之死