数学公式记忆的简单方法
在数学中,把一些常用的表示基本数量关系的等式作为数学公式,记忆数学公式是学习数学的基础,你知道有哪些简单的记忆方法吗?下面由学习啦小编给你带来关于数学公式记忆的简单方法,希望对你有帮助!
数学公式记忆的简单方法
1. 用语言描述公式
比如我们前面描述向量的数量积公式“横坐标之积与纵坐标之积的和”,
再比如同底数幂相乘的公式,可直接描述为“底数不变,指数相加”,幂的乘方公式,可直接描述为“底数不变,指数相乘”。
可能这些还不足以简洁神奇,那么“奇变偶不变,符号看象限”,这聊聊十字,就概括了六组几十个诱导公式,简直是高中数学中的“神诀”,朗朗上口,轻松记忆,很多高中生毕业后,可能数学知识忘了,但这句口诀,终身难忘。
2. 抓住公式特征
比如两角和的余弦公式
公式特征相当明显,即两个余弦乘积减去两个正弦乘积,用谐音“科科减赛赛”或者“哭哭减笑笑”就很好记
再比如,一个不常用但一旦用了就很方便的公式
公式特征是“sin上面1-cos,或者sin下面1+cos”,根据这个特征,可谐音记作“山上一剑客,山下一侠客”,生动好记,还有些趣味。当然这些,都需要我们自己去琢磨这些公式的特征
3. 运用类比和比较记忆
比如上面两角和的余弦公式记住了,那么两角差的余弦公式可以类比记忆,
“哭哭加笑笑”,同时还可类比记忆两角和与差的正弦公式、正切公式,诸如此类
再比如,学过等差数列后,你熟悉了等差数列的性质,可以根据等比数列的定义,去理解记忆等比数列的性质,例如,等差数列的下标和如果一样,那么它们的和相等,到了等比数列这,就是它们的积相等了;
再如,等差数列前n项和有一个公式是n乘以中间项,那么类比到等比数列,可得相似结论:等比数列前n项积,等于中间项的n次方。诸如此类,类比在数列的学习中,是一种特别重要的思想
数学公式记忆口诀
有理数的加法运算
同号两数来相加,绝对值加不变号。
异号相加大减小,大数决定和符号。
互为相反数求和,结果是零须记好。
【注】“大”减“小”是指绝对值的大小。
有理数的减法运算
减正等于加负,减负等于加正。
有理数的乘法运算符号法则
同号得正异号负,一项为零积是零。
合并同类项
说起合并同类项,法则千万不能忘。
只求系数代数和,字母指数留原样。
去、添括号法则
去括号或添括号,关键要看连接号。
扩号前面是正号,去添括号不变号。
括号前面是负号,去添括号都变号。
解方程
已知未知闹分离,分离要靠移完成。
移加变减减变加,移乘变除除变乘。
平方差公式
两数和乘两数差,等于两数平方差。
积化和差变两项,完全平方不是它。
完全平方公式
二数和或差平方,展开式它共三项。
首平方与末平方,首末二倍中间放。
和的平方加联结,先减后加差平方。
完全平方公式
首平方又末平方,二倍首末在中央。
和的平方加再加,先减后加差平方。