如何学好一次函数
其实,学好函数并不难,只要从函数的第一节课开始,就打好基础,学好函数也是很简单的事。掌握一次函数的概念、图像、性质、应用对以后进一步学习函数有着非常重要的意义。以下是学习啦小编分享给大家的学好一次函数的方法的资料,希望可以帮到你!
学好一次函数的方法一
要注重对一次函数概念的理解
数学来源于生活,我们学习函数的概念,不妨借助生活的经验来理解函数关系,我们生活在运动变化着的世界里,可以说变量无处不在。让学生自己多思考,多列举一些生活中的实例,归纳出形如y=kx+b(k≠0,b为常数)的式子叫做一次函数。那我们知道一个x确定后只有唯一的y与之对应,就是说可以一对一如y=2x,也可以多对1如y=x,但不能一对多如y=x,有些时候还以图像的形式考,我们就要看x=a与图像的交点唯一与否,唯一就是函数,不唯一就不是。
学好一次函数的方法二
要明确学好一次函数的关键是图像和性质
要了解函数是由数到形,再由形到数,做到数、形的有机结合,这样才能更好地掌握一次函数的性质。首先要了解一次函数是一条直线,其次要明确如果k﹥0,一次函数过第一、三象限(当b﹥0时,过第一、二、三象限,当b﹤0时,过第一、三、四象限),y随x的增大而增大;如果k﹤0,一次函数过第二、四象限(当b﹥0时,过第一、二、四象限,当b﹤0时过,第二、三、四象限),y随x的增大而减少。
学好一次函数的方法三
要理解一次函数和其它知识的联系
一次函数和代数式以及方程有着密不可分的联系。如一次函数和正比例函数仍然是函数,同时,等号的两边又都是代数式。需要注意的是,与一般代数式有很大区别。首先,一次函数和正比例函数都只能存在两个变量,而代数式可以是多个变量;其次,一次函数中的变量指数只能是1,而代数式中变量指数还可以是1以外的数。另外,一次函数解析式也可以理解为二元一次方程。
学好一次函数的方法四
掌握一次函数的解析式的特征
1、一次函数解析式的结构特征:kx+b是关于x的一次二项式,其中常数b可以是任意实数,一次项系数k必须是非零数,k≠0,因为当k=0时,y=b(b是常数),由于没有一次项,这样的函数不是一次函数;而当b=0,k≠0,y=kx既是正比例函数,也是一次函数。
例、下列函数关系中,哪些属于一次函数,其中哪些又属于正比例函数?
(1)面积为10cm2的三角形的底a(cm)与这边上的高h(cm);
(2)汽车每小时行40千米,行驶的路程s(千米)和时间t(小时).
分析:确定函数是否为一次函数或正比例函数,就是看它们的解析式经过整理
后是否符合y=kx+b(k≠0)或y=kx(k≠0)形式,所以此题必须先写出函数解析式后解答.
解:(1)不是一次函数.(4)s=40t,s既是t的一次函数又是正比例函数.
2、一次函数与正比例函数的区别与联系:(1)从解析式看:y=kx+b(k≠0,b是常数)是一次函数;而y=kx(k≠0,b=0)是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。(2)从图象看:正比例函数y=kx(k≠0)的图象是过原点(0,0)的一条直线;而一次函数y=kx+b(k≠0)的图象是过点(0,b)且与y=kx平行的一条直线。
例、已知函数y=(k-2)x+2k+1,若它是正比例函数,求k的值.若它是一次函数,求:k的值.
分析:求根据一次函数和正比例函数的定义,易得k的值.
解:若y=(k-2)x+2k+1是正比例函数,则2k+1=0,即k=.
若y=(k-2)x+2k+1是一次函数,则k-2≠0,即k≠2.
学好一次函数的方法五
把握用待定系数法求函数解析式的一般步骤
1、依题意,设出含有待定系数的函数解析式;
2、把已知条件(自变量与函数对应值)代入解析式,得到关于待定系数的方程(组);
3、解方程(组),求出待定系数;
4、将求得的待定系数的值代回所设的函数解析式,从而得到所求函数解析式。
例、已知:一次函数的图象经过点(2,-1)和点(1,-2).
(1)求此一次函数的解析式;(2)求此一次函数与x轴、y轴的交点坐标
分析:一般一次函数有两个待定字母k、b.要求解析式,只须将两个独立条件代入,再解方程组即可.凡涉及求两个函数图象的交点坐标时,一般方法是将两个函数的解析式组成方程组,求出方程组的解就求出了交点坐标.
解:(1)设函数解析式为y=kx+b .
解方程:-1=2k+b与-2=k+b得:K= 1 ,b= -3所以一次函数解析式为y= x -3
(2)当y=0时x=3,当x=0时y=-3。可得直线与x轴交点(3,0)、与y轴交点(0,-3)
评析:用待定系数法求函数解析式,求直线的交点均与解方程(组)有关,因此必须重视函数与方程之间的关系.
学好一次函数的方法六
应用一次函数解决实际问题
函数有三要素:定义域、值域、解析式。我们考虑函数问题的时候首先就要考虑定义域,很多应用题是分段函数,那么我们就要求出各个线段和射线的解析式并指出x的取值范围,很多时候就要注意考虑结合一元一次不等式组。在考虑问题时还要注意如何写每段的解析式。有的题是给出图写解析式,有的题是解析式与图结合,看图特别要注意起点、折点。那如何去解决实际问题呢?
1、分清哪些是已知量,哪些是未知量,尤其要弄清哪两种量是相关联的量,且其中一种量因另一种量的变化而变化;
2、找出具有相关联的两种量的等量关系之后,明确哪种量是另一种量的函数;
3、在实际问题中,一般存在着三种量,如距离、时间、速度等等,在这三种量中,当且仅当其中一种量时间(或速度)不变时,距离与速度(或时间)才成正比例,也就是说,距离(s)是时间(t)或速度(v)的正比例函数;
4、求一次函数与正比例函数的关系式,一般采取待定系数法。
例、某电信公司开设了甲、乙两种市内移动通信业务.甲种使用者每月需缴15元月租费,然后每通话1min,再付话费0.3元;乙种使用者不缴月租费,每通话min付话费0.6元.若一个月内通话时间为x(min),甲、乙两种的费用分别为y1和y2元.(1)试分别写出y1、y2与x之间的函数关系式;(2)在同一坐标系内画出y1、y2的图象;(3)根据一个月通话时间,你认为选用哪种通信业务更优惠?
分析:从实际问题中求解得出函数解析式,往往可以通过列方程的思想进行实施.
解:(1)由题意得: y1=0.3x+15(x≥0),y2=0.6x(x≥0);
(2)如图;略(3)由图象知:当一个月的通话时间为50min时,两种业务一样优惠.当一个月的通话时间少于50min时,乙种业务更优惠.
当一个月的通话时间多于50min时,甲种业务更优惠.