学习啦>学习方法>通用学习方法>学习态度>

大一怎么学好高数

威敏分享

  大学高数一直以来都是学生离不开的话题,大一应该怎样学好呢?下面学习啦小编收集了一些关于大一学习高数方法,希望对你有帮助

  大一正确的学习高数方法

  第一,要勤学、善思、多练。

  所谓学,包括学和问两方面,即向教师,向同学,向自己学和问。惟有在“学中问”和“问中学”,才能消化数学的概念、理论、方法;所谓思,就是将所学内容,经过思考加工去粗取精,抓本质和精华。华罗庚“抓住要点”使“书本变薄”的这种勤于思考、善于思考、从厚到薄的学习数学的方法,值得我们借鉴;所谓习,就《高等数学》而言,就是做练习,这是数学自身的特点。练习一般分为两类,一是基础训练练习,经常附在每章每节之后,这类问题相对来说比较简单,无大难度,但很重要,是打基础部分。二是提高训练练习,知识面广些,不局限于本章本节,在解决的方法上要用到多种数学工具。数学的练习是消化巩固知识极重要的一个环节,舍此达不到目的。

  第二,狠抓基础,循序渐进。

  任何学科,基础内容常常是最重要的部分,它关系到学习的成败与否。《高等数学》本身就是数学和其他学科的基础,而《高等数学》又有一些重要的基础内容,它关系到整个知识结构的全局。以微积分部分为例,极限贯穿着整个微积分,函数的连续性及性质贯穿着后面一系列定理结论,初等函数求导法及积分法关系到今后各个学科。因此,一开始就要下狠功夫,牢牢掌握这些基础内容。在学习《高等数学》时要一步一个脚印,扎扎实实地学和练。

  第三,归类小结,从厚到薄。

  记忆总的原则是抓纲,在用中记。归类小结是一个重要方法。《高等数学》归类方法可按内容和方法两部分小结,以代表性问题为例辅以说明。在归类小节时,要特别注意有基础内容派生出来的一些结论,即所谓一些中间结果,这些结果常常在一些典型例题和习题上出现,如果你能多掌握一些中间结果,则解决一般问题和综合训练题就会感到轻松。

  第四,精读一本参考书。

  实践证明,在教师指导下,抓准一本参考书,精读到底,如果你能熟读了一本有代表性的参考书,再看其它参考书就会迎刃而解了。

  第五,注意学习效率。

  数学的方法和理论的掌握,常常需要做到熟能生巧、触类旁通。人不可能通过一次学习就掌握所学的知识,需要有几个反复。所谓“学而时习之”、“温故而知新”都是指学习要经过反复多次。《高等数学》的记忆,必须建立在理解和熟练做题的基础上,死记硬背无济于事。

  第六,掌握学习规律

  1.书:课本+习题集(必备),因为学好数学绝对离不开多做题,建议习题集最好有本跟考研有关的,这样也有利于你做好将来的考研准备。

  2.笔记:尽量有,我说的笔记不是指原封不动的抄板书,那样没意思,而且不必非单独用个小本,可记在书上。关键是在笔记上一定要有自己对每一章知识的总结,类似于一个提纲,(有时老师或参考书上有,可以参考),最好还有各种题型+方法+易错点。

  3.上课:建议最好预习后听,听不懂不要紧,很多大学的课程都是靠课下结合老师的笔记自己重新看。但是记住:高数千万别搞考前突击,绝对行不通,所以平时你就要跟上,步步尽量别断层。

  4.学好高数=基本概念透+基本定理牢+基本网络有+基本常识记+基本题型熟。数学就是一个概念+定理体系(还有推理),对概念的理解至关重要,比如说极限、导数等,你既要有形象的对它们的理解,也要熟记它们的数学描述,不用硬背,可以自己对着书举例子,画个图看看(形象理解其实很重要),然后多做题,做题中体会。建议你用一只彩笔专门把所有的概念标出来,这样看书时一目了然(定理用方框框起来)。基本网络就是上面说的笔记上的总结的知识提纲,也要重视。基本常识就是高中时老师常说的“准定理”,就是书上没有,在习题中我们总结的可以当定理或推论用的东西,还有一些自己小小的经验。这些东西不正式但很有用的,比如各种极限的求法。

  大一学习高数方法

  一、摒弃中学的学习方法,尽快适应环境。一个高中生升入大学学习后,不仅要在心理上适应新的学习生活,同时学习方法的改变也是一个不容忽视的方面。中学时期主要是老师领着学,学生只需要跟着老师的指挥棒走就可以了,而在大学时主要靠自学,教师只起一个引导的作用。例如,中学的数学课教学完全是按教材的内容进行的,老师在课堂上讲,学生听,不要求学生记笔记。教师授课慢,讲得细,计算方法举例多,课后只要求学生能模仿课堂上所讲的内容解决课后习题就可以了,没有必要去钻研教材和其他参考书(为了高考增强学生的解题能力而选择一些参考书,仅是为了训练学生的解题能力的需要)。而大学高等数学课程的学习,教材仅是作为一种主要的参考书,要求学生以课堂上老师所讲的重点和难点为线索,课后去钻研教材和阅读大量的同类参考书,然后去完成课后习题。就这样反复地进行创造性学习。所以大家应改变自己的学习方法,尽快适应大学生活,形成一个良好的开端,这对以后四年的大学生涯都是有益的。

  二、注意中学数学和《高等数学》的区别与联系。中学数学课程的中心是从具体数学到概念化数学的转变,宗旨是为大学微积分作准备。学习数学总要经历由具体到抽象、由特殊到一般的渐进过程。而《高等数学》首先要做的是帮助学生发展函数概念——变量间关系的表述方式。这就把同学们的理解力从常量推进到变量、从描述推进到证明、从具体情形推进到一般方程。而且《高等数学》的主要内容是微积分,它继承了中学的训练,它们之间有千丝万缕的联系。所以如果大家能够悟透其中的联系,那么学习的时候就会有一个很好的过渡,就可以将高数轻而易举的学会了!

  三、狠抓基础,循序渐进。任何学科,基础内容常常是最重要的部分,它关系到学习的成败与否。《高等数学》本身就是数学和其他学科的基础,而且《高等数学》又有一些重要的基础内容,它关系到整个知识结构的全局。以微积分部分为例,极限贯穿着整个微积分,函数的连续性及性质贯穿着后面一系列定理结论,初等函数求导法及积分法关系到今后各个学科。而函数的连续与间断、积分的换元法、分步积分法等一时很难掌握,这需要每个同学反复琢磨,反复思考,反复训练,锲而不舍。通过正反例子比较,从中悟出一些道理,才能从不懂到一知半解到基本掌握。因此,一开始就要下狠功夫,牢牢掌握这些基础内容,在学习时要一步一个脚印,扎扎实实地学习和练习。

  四、精读一本参考书。在老师的指导下,抓准一本参考书,精读到底。如果我们能熟读一本有代表性的参考书,再看其它参考书的时候,难题就会迎刃而解了。
猜你感兴趣:

1.大一新生如何学好高等数学

2.大学高数要怎么学习

3.大一高等数学学习方法

4.大学高数学习心得体会精选

5.高等数学该怎么学好

    3185963