线性代数怎么学好
线+性代数是一门研究线性问题的数学基础课,线性代数实质上是提供了自己独特的语言和方法,将那些涉及多变量的问题组织起来并进行分析研究,下面学习啦小编收集了一些关于线性代数学习方法,希望对你有帮助
线性代数学习方法
一、线性代数如果注意以下几点是有益的.
由易而难 线性代数常常涉及大型数组,故先将容易的问题搞明白,再解决有难度的问题,例如行列式定义,首先将3阶行列式定义理解好,自然可以推广到n阶行列式情形;
由低而高 运用技巧,省时不少,无论是行列式还是矩阵,在低阶状态,找出适合的计算方法,则可自如推广运用到高阶情形;
由简而繁 一些运算法则,先试用于简单情形,进而应用于复杂问题,例如,克莱姆法则,线性方程组解存在性判别,对角化问题等等;
由浅而深线性代数中一些新概念如秩,特征值特征向量,应当先理解好它们的定义,在理解基础之上,才能深刻理解它们与其他概念的联系、它们的作用,一步步达到运用自如境地。
二、注重对基本概念的理解与把握,正确熟练运用基本方法及基本运算。
1、线性代数的概念很多,重要的有:
代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化,二次型的标准形与规范形,正定,合同变换与合同矩阵。
2、线性代数中运算法则多,应整理清楚不要混淆,基本运算与基本方法要过关,重要的有:
行列式(数字型、字母型)的计算,求逆矩阵,求矩阵的秩,求方阵的幂,求向量组的秩极大线性无关组,线性相关的判定或求参数,求基础解系,求非齐次线性方程组的通解,求特征值与特征向量(定义法,特征多项式基础解系法),判断与求相似对角矩阵,用正交变换化实对称矩阵为对角矩阵(亦即用正交变换化二次型为标准形)。
三、注重知识点的衔接与转换,知识要成网,努力提高综合分析能力。
线性代数从内容上看纵横交错,前后联系紧密,环环相扣,相互渗透,因此解题方法灵活多变,学习时应当常问自己做得对不对?再问做得好不好?只有不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了。
四、注重逻辑性与叙述表述
线性代数对于抽象性与逻辑性有较高的要求,通过证明题可以了解学生对数学主要原理、定理的理解与掌握程度,考查学生的抽象思维能力、逻辑推理能力。大家学习整理时,应当搞清公式、定理成立的条件,不能张冠李戴,同时还应注意语言的叙述表达应准确、简明。
线性代数复习建议
一、重视基本概念、基本性质、基本方法的理解和掌握
基本概念、基本性质和基本方法一直是考研数学的重点,线性代数更是如此。从多年的阅卷情况和经验看,有些考生对基本概念掌握不够牢固,理解不够 透彻,在答题中对基本性质的应用不知如何下手,因此,造成许多不应该的失分现象。所以,考生在复习中一定要重视基本概念、基本性质和基本方法的理解与掌 握,多做一些基本题来巩固基本知识。
二、加强综合能力的训练,培养分析问题和解决问题的能力
从近十年特别是近两年的研究生入学考试试题看,加强了对考生分析问题和解决问题能力的考核。在线性代数的两个大题中,基本上都是多个知识点的综 合。从而达到对考生的运算能力、抽象概括能力、逻辑思维能力和综合运用所学知识解决实际问题的能力的考核。因此,在打好基础的同时,通过做一些综合性较强 的习题(或做近年的研究生考题),边做边总结,以加深对概念、性质内涵的理解和应用方法的掌握。
三、注重分析一些重要概念和方法之间的联系和区别
线性代数的内容不多,但基本概念和性质较多。他们之间的联系也比较多,特别要根据每年线性代数考试的两个大题内容,找出所涉及到的概念与方法之 间的联系与区别。例如:向量的线性表示与非齐次线性方程组解的讨论之间的联系;向量的线性相关(无关)与齐次线性方程组有非零解(仅有零解)的讨论之间的 联系;实对称阵的对角化与实二次型化标准型之间的联系等。掌握他们之间的联系与区别,对大家做线性代数的两个大题在解题思路和方法上会有很大的帮助。
猜你感兴趣:
3.数理化基本知识