学习啦>学习方法>教学方法>

高中数学教案人教版有哪些

欣怡分享

  教师在写教案时,一定从实际出发,要充分考虑从实际需要出发,要考虑教案的可行性和可操作性。那么高中数学教案人教版有哪些?下面是学习啦小编分享给大家的高中数学教案,希望大家喜欢!

  高中数学教案一

  教学目标

  1.了解函数的单调性和奇偶性的概念,掌握有关证明和判断的基本方法.

  (1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念.

  (2)能从数和形两个角度认识单调性和奇偶性.

  (3)能借助图象判断一些函数的单调性,能利用定义证明某些函数的单调性;能用定义判断某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程.

  2.通过函数单调性的证明,提高学生在代数方面的推理论证能力;通过函数奇偶性概念的形成过程,培养学生的观察,归纳,抽象的能力,同时渗透数形结合,从特殊到一般的数学思想.

  3.通过对函数单调性和奇偶性的理论研究,增学生对数学美的体验,培养乐于求索的精神,形成科学,严谨的研究态度.

  教学建议

  一、知识结构

  (1)函数单调性的概念。包括增函数、减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系.

  (2)函数奇偶性的概念。包括奇函数、偶函数的定义,函数奇偶性的判定方法,奇函数、偶函数的图像.

  二、重点难点分析

  (1)本节教学的重点是函数的单调性,奇偶性概念的形成与认识.教学的难点是领悟函数单调性, 奇偶性的本质,掌握单调性的证明.

  (2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观察图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它.这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫.单调性的证明是学生在函数内容中首次接触到的代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证明,也没有意识到它的重要性,所以单调性的证明自然就是教学中的难点.

  三、教法建议

  (1)函数单调性概念引入时,可以先从学生熟悉的一次函数,,二次函数.反比例函数图象出发,回忆图象的增减性,从这点感性认识出发,通过问题逐步向抽象的定义靠拢.如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来解释,引导学生发现自变量与函数值的的变化规律,再把这种规律用数学语言表示出来.在这个过程中对一些关键的词语(某个区间,任意,都有)的理解与必要性的认识就可以融入其中,将概念的形成与认识结合起来.

  (2)函数单调性证明的步骤是严格规定的,要让学生按照步骤去做,就必须让他们明确每一步的必要性,每一步的目的,特别是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便帮助学生总结规律.

  函数的奇偶性概念引入时,可设计一个课件,以

  的图象为例,让自变量互为相反数,观察对应的函数值的变化规律,先从具体数值

  开始,逐渐让

  在数轴上动起来,观察任意性,再让学生把看到的用数学表达式写出来.经历了这样的过程,再得到等式

  时,就比较容易体会它代表的是无数多个等式,是个恒等式.关于定义域关于原点对称的问题,也可借助课件将函数图象进行多次改动,帮助学生发现定义域的对称性,同时还可以借助图象(如

  )说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件.

  高中数学教案二

  教学目标

  1.使学生掌握指数函数的概念,图象和性质.

  (1)能根据定义判断形如什么样的函数是指数函数,了解对底数的限制条件的合理性,明确指数函数的定义域.

  (2)能在基本性质的指导下,用列表描点法画出指数函数的图象,能从数形两方面认识指数函数的性质.

  (3) 能利用指数函数的性质比较某些幂形数的大小,会利用指数函数的图象画出形如的图象.

  2. 通过对指数函数的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法.

  3.通过对指数函数的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣.使学生善于从现实生活中数学的发现问题,解决问题.

  教学建议

  教材分析

  (1) 指数函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究.

  (2) 本节的教学重点是在理解指数函数定义的基础上掌握指数函数的图象和性质.难点是对底数时,函数值变化情况的区分.

  (3)指数函数是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从指数函数的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究.

  教法建议

  (1)关于指数函数的定义按照课本上说法它是一种形式定义即解析式的特征必须是的样子,不能有一点差异,诸如等都不是指数函数.

  (2)对底数

  的限制条件的理解与认识也是认识指数函数的重要内容.如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对指数函数的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来.

  关于指数函数图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象.

  高中数学教案三

  一、教学目标

  1、知识与技能目标:认识平面直角坐标系,了解点与坐标的对应关系;

  2、过程与方法目标:通过研究平面直角坐标中数与点的对应关系,能根据坐标描出点的位置;

  3、情感态度与价值观目标:感受代数与几何问题的相互转换。体会品面直角坐标系在解决实际问题的作用,培养数学学习兴趣。

  二、教学重难点

  重点:理解平面直角坐标中点与数的一一对应关系;

  难点:根据坐标描出点的位置,以及坐标轴上的点的坐标特点。

  三、教学用具

  教师准备四张大的纸质坐标格子。

  四、教学过程:

  (一)温故知新,导入新课

  游戏导入:上一节课我们学习了有序数对,大家学习积极性很高,今天老师先考考你们, 看你们掌握了多少。

  我们将教室里的座位分为八列七排。a排b号记做有序数对(a,b),同学们先找准自己的数对号。听老师报数对,若是你自己的数对号,就快速站起来。反应太慢和站错了都算失败,扣一分;反之加一分。最后以组为单位,比比哪组得分最高。

  我们可以发现,通过教室平面内的有序数对,可以唯一的确定与之对应的同学。

  (二)新课教学

  课本例子:我们知道数轴上的点可以用一个数来表示,这个数叫做这个点的坐标。例如点A数轴上的坐标是-4,点B数轴上的坐标是2;我们说坐标是3.5的点,也可以在数轴上唯一确定。

  教师提问1:类似于数轴确定直线上点的位置,能不能找到一种方法来确定平面内点的位置呢?平面内给出任意点A、B、C、D,我们怎么确定这些点的位置

  学生活动:小a说可以像教室座位一样给任意点编一个横排纵排的号,小B说我们可以每个点列一个数轴···

  教师活动:引导学生思考,怎么才能用同一标准,方便的确定每一点的位置?

  结合横纵排编号以及数轴,我们可以综合考虑,引出一个横纵的数轴?

  得出结论:我们可以在平面内画两条相互垂直、原点重合的数轴,组成平面直角坐标系,水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上为正方向;两坐标轴的交点为平面直角坐标系的原点。

  那有了这样的平面直角坐标系,平面内的点就可以用之前学的有序数对来表示了。例如:由A分别向x轴和y轴作垂线。垂足M在x轴上的坐标是3,垂足N在y轴上的坐标是4,我们说A的坐标是3,纵坐标是4,有序数对(3,4)就叫做A的坐标,记作A(3,4)

  教师提问2:同学们按照这种做法,在坐标纸上标出B、C、D的坐标。

  教师活动:走下讲台,关注学生的汇坐标过程方法,指出学生出现问题的地方,并予以改正。

  教师提问3:在横纵坐标轴上各标一点E、F,问:坐标原点以及这两点的坐标是什么?

  教师活动:引导学生思考归纳坐标轴上的点的坐标的特点。

  得出结论:原点的坐标是(0,0),x轴上的点的坐标的纵坐标为0;y轴上的点的坐标的横坐标为0。

  (三)课程巩固

  师生互动:与学生一起回忆平面直角坐标系的各部分的意义,平面内的点怎么对应坐标,以及坐标轴上的点的坐标特点。

  “练一练”:

  在黑板上贴出四张事先准备好的纸质坐标格子,在上面标出任意的ABCDEFG等点,每组我点一个按坐标序列对,对应的同学上黑板,来描出各点的坐标。对一个加一分,错一个扣一分,得分相同的看用时,时间短者胜,过程中下面的学生不能提示,提示一次扣2分。比赛看哪组学生代表得分最多。

  (1,2)、(3,4)、(5,6)、(7,8)四位同学上黑板来描点。

  教师活动:规范课堂气氛,公平的评判,对于表现好的小组代表予以表扬,表现稍逊的学生不要气馁,给予鼓励,争取下一次可以获胜。

  (四)小结作业

  思考平面直角坐标系中坐标与点的对应关系,如何由坐标值确定点的位置。下节课我们会探讨这个问题。

  五、板书设计

  平面直角坐标系:平面内画两条相互垂直、原点重合的数轴组成

  水平的数轴称为x轴或横轴,习惯上取向右为正方向;

  竖直的数轴称为y轴或纵轴,取向上为正方向;

  两坐标轴的交点为平面直角坐标系的原点。

猜你喜欢:

1.高中数学有哪些学习方法与技巧

2.有关高中数学教学案例反思的随笔

3.学生的学习高中数学的方式有哪些

4.高中数学科目必修5目录

5.高中数学教学计划范文3篇

    3788159