学习啦>学习方法>教学方法>

初中数学优秀教案应该怎么设计

欣怡分享

  教师在写教案时,一切都要从实际出发,作用才能保证学生们能把知识学到,下面是学习啦小编分享给大家的初中数学优秀教案设计的资料,希望大家喜欢!

  初中数学优秀教案设计一

  一、 教学目标

  1. 了解分式、有理式的概念.

  2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件.

  二、重点、难点

  1.重点:理解分式有意义的条件,分式的值为零的条件.

  2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件.

  3.认知难点与突破方法

  难点是能熟练地求出分式有意义的条件,分式的值为零的条件.突破难点的方法是利用分式与分数有许多类似之处,从分数入手,研究出分式的有关概念,同时还要讲清分式与分数的联系与区别.

  三、例、习题的意图分析

  本章从实际问题引出分式方程 = ,给出分式的描述性的定义:像这样分母中含有字母的式子属于分式. 不要在列方程时耽误时间,列方程在这节课里不是重点,也不要求解这个方程.

  1.本节进一步提出P4[思考]让学生自己依次填出: , , , .为下面的[观察]提供具体的式子,就以上的式子 , , , ,有什么共同点?它们与分数有什么相同点和不同点?

  可以发现,这些式子都像分数一样都是 (即A÷B)的形式.分数的分子A与分母B都是整数,而这些式子中的A、B都是整式,并且B中都含有字母.

  P5[归纳]顺理成章地给出了分式的定义.分式与分数有许多类似之处,研究分式往往要类比分数的有关概念,所以要引导学生了解分式与分数的联系与区别.

  希望老师注意:分式比分数更具有一般性,例如分式 可以表示为两个整式相除的商(除式不能为零),其中包括所有的分数 .

  2. P5[思考]引发学生思考分式的分母应满足什么条件,分式才有意义?由分数的分母不能为零,用类比的方法归纳出:分式的分母也不能为零.注意只有满足了分式的分母不能为零这个条件,分式才有意义.即当B≠0时,分式 才有意义.

  3. P5例1填空是应用分式有意义的条件—分母不为零,解出字母x的值.还可以利用这道题,不改变分式,只把题目改成“分式无意义”,使学生比较全面地理解分式及有关的概念,也为今后求函数的自变量的取值范围,打下良好的基础.

  4. P12[拓广探索]中第13题提到了“在什么条件下,分式的值为0?”,下面补充的例2为了学生更全面地体验分式的值为0时,必须同时满足两个条件:○1分母不能为零;○2分子为零.这两个条件得到的解集的公共部分才是这一类题目的解.

  四、课堂引入

  1.让学生填写P4[思考],学生自己依次填出: , , , .

  2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?

  请同学们跟着教师一起设未知数,列方程.

  设江水的流速为x千米/时.

  轮船顺流航行100千米所用的时间为 小时,逆流航行60千米所用时间 小时,所以 = .

  3. 以上的式子 , , , ,有什么共同点?它们与分数有什么相同点和不同点?

  五、例题讲解

  P5例1. 当x为何值时,分式有意义.

  [分析]已知分式有意义,就可以知道分式的分母不为零,进一步解

  出字母x的取值范围.

  [提问]如果题目为:当x为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.

  (补充)例2. 当m为何值时,分式的值为0?

  (1) (2) (3)

  [分析] 分式的值为0时,必须同时满足两个条件:○1分母不能为零;○2分子为零,这样求出的m的解集中的公共部分,就是这类题目的解.

  [答案] (1)m=0 (2)m=2 (3)m=1

  六、随堂练习

  1.判断下列各式哪些是整式,哪些是分式?

  9x+4, , , , ,

  2. 当x取何值时,下列分式有意义?

  (1) (2) (3)

  3. 当x为何值时,分式的值为0?

  (1) (2) (3)

  七、课后练习

  1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?

  (1)甲每小时做x个零件,则他8小时做零件 个,做80个零件需 小时.

  (2)轮船在静水中每小时走a千米,水流的速度是b千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时.

  (3)x与y的差于4的商是 .

  2.当x取何值时,分式 无意义?

  3. 当x为何何值时,分式 的值为0?

  八、答案:

  六、1.整式:9x+4, , 分式: , ,

  2.(1)x≠-2 (2)x≠ (3)x≠±2

  3.(1)x=-7 (2)x=0 (3)x=-1

  七、1.18x, ,a+b, , ; 整式:8x, a+b, ;

  分式: ,

  2. X = 3. x=-1

  初中数学优秀教案设计二

  一、教学目标

  1.理解分式的基本性质.

  2.会用分式的基本性质将分式变形.

  二、重点、难点

  1.重点: 理解分式的基本性质.

  2.难点: 灵活应用分式的基本性质将分式变形.

  3.认知难点与突破方法

  教学难点是灵活应用分式的基本性质将分式变形. 突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质.应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形.

  三、例、习题的意图分析

  1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.

  2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.

  教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.

  3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.

  “不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5.

  四、课堂引入

  1.请同学们考虑: 与 相等吗? 与 相等吗?为什么?

  2.说出 与 之间变形的过程, 与 之间变形的过程,并说出变形依据?

  3.提问分数的基本性质,让学生类比猜想出分式的基本性质.

  五、例题讲解

  P7例2.填空:

  [分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.

  P11例3.约分:

  [分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.

  P11例4.通分:

  [分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.

  (补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.

  , , , , 。

  [分析]每个分式的分子、分母和分式本身都有自己的符号,其中两个符号同时改变,分式的值不变.

  解: = , = , = , = , = 。

  六、随堂练习

  1.填空:

  (1) = (2) =

  (3) = (4) =

  2.约分:

  (1) (2) (3) (4)

  3.通分:

  (1) 和 (2) 和

  (3) 和 (4) 和

  4.不改变分式的值,使下列分式的分子和分母都不含“-”号.

  (1) (2) (3) (4)

  七、课后练习

  1.判断下列约分是否正确:

  (1) = (2) =

  (3) =0

  2.通分:

  (1) 和 (2) 和

  3.不改变分式的值,使分子第一项系数为正,分式本身不带“-”号.

  (1) (2)

  八、答案:

  六、1.(1)2x (2) 4b (3) bn+n (4)x+y

  2.(1) (2) (3) (4)-2(x-y)2

  3.通分:

  (1) = , =

  (2) = , =

  (3) = =

  (4) = =

  4.(1) (2) (3) (4)

  初中数学优秀教案设计三

  一、教材内容

  人民教育出版社《义务教育课程标准实验教科书数学》六年级下册第2~4页例1、例2。

  二、教学目标

  1.引导学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道0不是正数也不是负数。

  2.使学生初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的联系。

  3.结合负数的历史,对学生进行爱国主义教育;培养学生良好的数学情感和数学态度。

  三、教学重、难点

  认识负数的意义。

  四、教学过程

  (一)谈话交流

  谈话:同学们,刚才一上课大家就做了一组相反的动作,是什么?(起立、坐下。)今天的数学课我们就从这个话题聊起。(板书:相反。)我们周围有很多的自然和社会现象中都存在着相反的情况,请看屏幕:(课件播放图片。)太阳每天从东方升起,西方落下;公交车的站点有人上车和下车;繁华的街市上有买也有卖;激烈的赛场上有输也有赢……你能举出一些这样的现象吗?

  (二)教学新知

  1.表示相反意义的量

  (1)引入实例

  谈话:如果沿着刚才的话题继续“聊”下去的话,就很自然地走进数学,我们一起来看几个例子(课件出示)。

  ① 六年级上学期转来6人,本学期转走6人。

  ② 张阿姨做生意,二月份盈利1500元,三月份亏损200元。

  ③ 与标准体重比,小明重了2.5千克,小华轻了 1.8千克。

  ④ 一个蓄水池夏季水位上升米,冬季水位下降米。

  指出:这些相反的词语和具体的数量结合起来,就成了一组组“相反意义的量”。(补充板书:相反意义的量。)

  (2)尝试

  怎样用数学方式来表示这些相反意义的量呢?

  请同学们选择一例,试着写出表示方法。

  ……

  (3)展示交流

  ……

  2.认识正、负数

  (1)引入正、负数

  谈话:刚才,有同学在6的前面写上“+”表示转来6人,添上“-”表示转走6人(板书:+6 -6),这种表示方法和数学上是完全一致的。

  介绍:像“-6”这样的数叫负数(板书:负数);这个数读作:负六。

  “-”,在这里有了新的意义和作用,叫“负号”。“+”是正号。

  像“+6”是一个正数,读作:正六。我们可以在6的前面加上“+”,也可以省略不写(板书:6)。其实,过去我们认识的很多数都是正数。

  (2)试一试

  请你用正、负数来表示出其它几组相反意义的量。

  写完后,交流、检查。

  3.联系实际,加深认识

  (1)说一说存折上的数各表示什么?(教学例2。)

  (2)联系生活实际举出一组相反意义的量,并用正、负数来表示。

  ① 同桌交流。

  ② 全班交流。根据学生发言板书。

  这样的正、负数能写完吗?(板书:… …)

  强调指出:像过去我们熟悉的这些整数、小数、分数等都是正数,也叫正整数、正小数、正分数;在它们的前面添上负号,就成了负整数、负小数、负分数,统称负数。

  4.进一步认识“0”

  (1)看一看、读一读

  谈话:接下来,我们一起来看屏幕:这是去年12月份某天,部分城市的气温情况(课件出示)。

  哈尔滨: -18 ℃~-5 ℃

  北京: -6 ℃~6 ℃

  深圳: 15 ℃~25 ℃

  温度中有正数也有负数,请把负数读出来。

  (2)找一找、说一说

  我们来看首都北京当天的温度,“-5 ℃”读作:“负五摄氏度”或“负五度”,表示零下5度;5 ℃又表示什么?

  你能在温度计上找出这两个温度所在的刻度吗?(课件出示温度计,没有刻度数)为什么?

  现在你能很快找出来吗?(给出温度计的刻度数,生到前面指。)

  说一说,你怎么这么快就找到了?

  (课件配合演示:先找0℃,在它的下面找-5℃,在它的上面找5℃。)

  你能很快找到12 ℃、-3 ℃吗?

  (3)提升认识

  请学生观察温度计,说一说有什么发现?

  在学生发言的基础上,强调:以0℃为分界点,零上温度都用正数来表示,零下温度都用负数来表示。(或负数都表示零下温度,正数都表示零上温度。)

  “0”是正数,还是负数呢?

  在学生发言的基础上,强调:“0”作为正数和负数的分界点,它既不是正数也不是负数。

  (4)总结归纳

  如果过去我们所认识的数只分为正数和0的话,那么今天我们可以对“数”进行重新分类:

  5.练一练

  读一读,填一填。

  6.出示课题

  同学们,想一想,今天你学习了什么新知识?认识了哪位新朋友?你能为今天的数学课定一个课题吗?

  根据学生的回答总结本节课所学内容,并选择板书课题:认识负数。

猜你喜欢:

1.初中数学课教学设计范文

2.初中数学教学设计与反思

3.初中数学示范课教案有哪些

4.初中数学有理数教学设计

5.初中数学优秀公开课教案有哪些

    3719192