初一数学不等式教学案例分析
初一的不等式说难不难,说容易不容易,但是认真学习总会学会。为了更好地学习不等式,一起先来看看不等式的教案吧,以下是学习啦小编分享给大家的初一数学不等式教学案例的资料,希望可以帮到你!
初一数学不等式教学案例一
不等式的解集
教学建议
一、知识结构
二、重点、难点分析
本节教学的重点是不等式的解集的概念及在数轴上表示不等式的解集的方法.难点为不等式的解集的概念.
1.不等式的解与方程的解的意义的异同点
相同点:定义方式相同(使方程成立的未知数的值,叫做方程的解);解的表示方法也相同.
不同点:解的个数不同,一般地,一个不等式有无数多个解,而一个方程只有一个或几个解,例如, 能使不等式 成立,那么 是不等式的一个解,类似地 等也能使不等式 成立,它们都是不等式 的解,事实上,当取大于 的数时,不等式 都成立,所以不等式 有无数多个解.
2.不等式的解与解集的区别与联系
不等式的解与不等式的解集是两个不同的概念,不等式的解是指满足这个不等式的未知数的某个值,而不等式的解集,是指满足这个不等式的未知数的所有的值,不等式的所有解组成了解集,解集中包括了每一个解.
注意:不等式的解集必须满足两个条件:第一,解集中的任何一个数值,都能使不等式成立;第二,解集外的任何一个数值,都不能使不等式成立.
3.不等式解集的表示方法
(1)用不等式表示
一般地,一个含未知数的不等式有无数多个解,其解集是某个范围,这个范围可用一个最简单的不等式表示出来,例如,不等式 的解集是 .
(2)用数轴表示
如不等式 的解集 ,可以用数轴上表示4的点的左边部分表示,因为 包含 ,所以在表示4的点上画实心圆.
如不等式 的解集 ,可以用数轴上表示4的点的左边部分表示,因为包含 ,所以在表示4的点上画实心圈.
注意:在数轴上,右边的点表示的数总比左边的点表示的数大,所以在数轴上表示不等式的解集时应牢记:大于向右画,小于向左画;有等号的画实心圆点,无等号的画空心圆圈.
一、素质教育目标
(一)知识教学点
1.使学生了解不等式的解集、解不等式的概念,会在数轴上表示出不等式的解集.
2.知道不等式的“解集”与方程“解”的不同点.
(二)能力训练点
通过教学,使学生能够正确地在数轴上表示出不等式的解集,并且能把数轴上的某部分数集用相应的不等式表示.
(三)德育渗透点
通过讲解不等式的“解集”与方程“解”的关系,向学生渗透对立统一的辩证观点.
(四)美育渗透点
通过本节课的学习,让学生了解不等式的解集可利用图形来表达,渗透数形结合的数学美.
二、学法引导
1.教学方法:类比法、引导发现法、实践法.
2.学生学法:明确不等式的解与解集的区别和联系,并能熟练地用数轴表示不等式的解集,在数轴上表示不等式的解集时,要特别注意:大于向右画,小于向左画;有等号的画实心圆点,无等号的画空心圆圈.
三、重点·难点·疑点及解决办法
(一)重点
1.不等式解集的概念.
2.利用数轴表示不等式的解集.
(二)难点
正确理解不等式解集的概念.
(三)疑点
弄不清不等式的解集与方程的解的区别、联系.
(四)解决办法
弄清楚不等式的解与解集的概念.
四、课时安排
一课时.
五、教具学具准备
投影仪或电脑、自制胶片、直尺.
六、师生互动活动设计
(一)明确目标
本节课重点学习不等式的解集,解不等式的概念并会用数轴表示不等式的解集.
(二)整体感知
通过枚举法来形象直观地推出不等式的解集,再给出不等式解集的概念,从而更准确地让学生掌握该概念.再通过师生的互动学习用数轴表示不等式的解集,从而为今后求不等式组的解集打下良好的基础.
(三)教学过程
1.创设情境,复习引入
(1)根据不等式的基本性质,把下列不等式化成
或 的形式.
① ②
(2)当 取下列数值时,不等式 是否成立?
l,0,2,-2.5,-4,3.5,4,4.5,3.
学生活动:独立思考并说出答案:(1)① ② .(2)当 取1,0,2,-2.5,-4时,不等式 成立;当 取3.5,4,4.5,3时,不等式 不成立.
大家知道,当 取1,2,0,-2.5,-4时,不等式 成立.同方程类似,我们就说1,2,0,-2.5,-4是不等式的解,而3.5,4,4.5,3这些使不等式 不成立的数就不是不等式 的解.
对于不等式 ,除了上述解外,还有没有解?解的个数是多少?将它们在数轴上表示出来,观察它们的分布有什么规律?
学生活动:思考讨论,尝试得出答案,指名板演如下:
【教法说明】启发学生用试验方法,结合数轴直观研究,把已说出的不等式 的解2,0,1,-2.5,-4用“实心圆点”表示,把不是 的解的数值3.5,4,4.5,3用“空心圆圈”表示,好像是“挖去了”.
师生归纳:观察数轴可知,用“实心圆点”表示的数都落在3的左侧,3和3右侧的数都用空心圆圈表示,从而我们推断,小于3的每一个数都是不等式 的解,而大于或等于3的任何一个数都不是 的解.可以看出,不等式 有无限多个解,这无限多个解既包括小于3的正整数、正小数、又包括0、负整数、负小数;把不等式 的无限多个解集中起来,就得到 的解的集会,简称不等式 的解集.
2.探索新知,讲授新课
(1)不等式的解集
一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解的集合,简称这个不等式的解集.
①以方程 为例,说出一元一次方程的解的情况.
②不等式 的解的个数是多少?能一一说出吗?
(2)解不等式
求不等式的解集的过程,叫做解不等式.
解方程 求出的是方程的解,而解不等式 求出的则是不等式的解集,为什么?
学生活动:观察思考,指名回答.
教师归纳:正是因为一元一次方程只有惟一解,所以可以直接求出.例如 的解就是 ,而不等式 的解有无限多个,无法一一列举出来,因而只能用不等式 或 揭示这些解的共同属性,也就是求出不等式的解集.实际上,求某个不等式的解集就是运用不等式的基本性质,把原不等式变形为 或 的形式, 或 就是原不式的解集,例如 的解集是 ,同理, 的解集是 .
【教法说明】学生对一元一次方程的解印象较深,而不等式与方程的相同点较多,因而易将“不等式的解集”与“方程的解”混为一谈,这里设置上述问题,目的是使学生弄清“不等式的解集”与“方程的解”的关系.
(3)在数轴上表示不等式的解集
①表示不等式 的解集:( )
分析:因为未知数的取值小于3,而数轴上小于3的数都在3的左边,所以就用数轴上表示3的点的左边部分来表示解集 .注意未知数 的取值不能为3,所以在数轴上表示3的点的位置上画空心圆圈,表示不包括3这一点,表示如下:
②表示 的解集:( )
学生活动:独立思考,指名板演并说出分析过程.
分析:因为未知数的取值可以为-2或大于-2的数,而数轴上大于-2的数都在-2右边,所以就用数钢上表示-2的点和它的右边部分来表示.如下图所示:
注意问题:在数轴上表示-2的点的位置上,应画实心圆心,表示包括这一点.
【教法说明】利用数轴表示不等式解的解集,增强了解集的直观性,使学生形象地看到不等式的解有无限多个,这是数形结合的具体体现.教学时,要特别讲清“实心圆点”与“空心圆圈”的不同用法,还要反复提醒学生弄清到底是“左边部分”还是“右边部分”,这也是学好本节内容的关键.
3.尝试反馈,巩固知识
(1)不等式的解集 与 有什么不同?在数轴上表示它们时怎样区别?分别在数轴上把这两个解集表示出来.
2)在数轴上表示下列不等式的解集.
① ② ③ ④
(3)指出不等式 的解集,并在数轴上表示出来.
师生活动:首先学生在练习本上完成,然后教师抽查,最后与出示投影的正确答案进行对比.
【教法说明】教学时,应强调2.(4)题的正确表示为:
我们已经能够在数轴上准确地表示出不等式的解集,反之若给出数轴上的某部分数集,还要会写出与之对应的不等式的解集来.
4.变式训练,培养能力
(1)用不等式表示图中所示的解集.
【教法说明】强调“· ”“ °”在使用、表示上的区别.
(2)单项选择:
①不等式 的解集是( )
A. B. C. D.
②不等式 的正整数解为( )
A.1,2 B.1,2,3 C.1 D.2
③用不等式表示图中的解集,正确的是( )
A. B. C. D.
④用数轴表示不等式的解集 正确的是( )
学生活动:分析思考,说出答案.(教师给予纠正或肯定)
【教法说明】此题以抢答形式茁现,更能激发学生探索知识的热情.
(四)总结、扩展
学生小结,教师完善:
1. 本节重点:
(1)了解不等式的解集的概念.
(2)会在数轴上表示不等式的解集.
2.注意事项:
弄清“ · ”还是“ °”,是“左边部分”还是“右边部分”.
七、布置作业
必做题:P65 A组 3.(1)(2)(3)(4)
八、板书设计
6.2 不等式的解集
一、1.不等式的解集:一般地,一个含有未知数的不等式的所有的解组成这个不等式的解的集合,简称不等式的解集.
2.解不等式:求不等式解的过程
二、在数轴上表示不等式的解集
三、注意:(1)“ · ”与“ °”;(2)“左边部分”与“右边部分”.
初一数学不等式教学案例二
不等式和它的基本性质 教学设计方案(二)
一、素质教育目标
(一)知识教学点
1.使学生理解掌握不等式的三条基本性质,尤其是不等式的基本性质3.
2.灵活运用不等式的基本性质进行不等式形.
(二)能力训练点
培养学生运用类比方法观察、分析、解决问题的能力及归纳总结概括的能力.
(三)德育渗透点
培养学生积极主动的参与意识和勇敢尝试、探索的精神.
(四)美育渗透点
通过不等式基本性质的学习,渗透不等式所具有的内在同解变形的数学美,激发学生探究数学美的兴趣与激情,从而陶治学生的数学情操。
二、学法引导
1.教学方法:观察法、探究法、尝试指导法、讨论法.
2.学生学法:通过观察、分析、讨论,引导学生归纳小结出不等式的三条基本性质,从具体下升到理论,再由理论指导具体的练习,从而强化学生对知识的理解与掌握.
三、重点·难点·疑点及解决办法
(一)重点
掌握不等式的三条基本性质,尤其是不等式的基本性质3.
(二)难点
正确应用不等式的三条基本性质进行不等式变形.
(三)疑点
弄不清“不等号方向不变”与“所得结果仍是不等式”之间的关系是学生学习的疑点.
(四)解决办法
讲清“不等式的基本性质”与“等式的基本性质”之间的区别与联系是教好本节内容的关键.
四、课时安排
一课时
五、教具学具准备
投影仪或电脑、自制胶片.
六、师生互动活动设计
1.通过设计的一组比较大小问题,让学生观察并归纳出不等式的三条基本性质.
2.通过教师的讲解及学生的质疑,让学生在与等式性质的对比中更加深入、准确地理解不等式的三条基本性质.
3.通过教师的板书及学生的互动练习,体现出以学生为主体,教师为主导的教学模式能更好地对学生实施素质教育.
七、教学步骤
(-)明确目标
本节课主要学习不等式的三条基本性质并能熟练地加以应用.
(二)整体感知
通过具体的事例观察并归纳出不等式的三条基本性质,再反复比较三条性质的异同,从而寻找出在实际应用某条性质时应注意的使用条件,同时注意将不等式的三条基本性质与等式的基本性质1、2进行比较:相同点为不管是对等式还是不等式,都可以在它的两边同加(或减)同一个数或同一个整式.不同点是对于等式来说,在等式的两边乘以(或除以)同一个正数(或同一个负数)的情况下等式仍然对立.但对于不等式来说,却不一样,在用同一个正数去乘(或除)不等式两边时,不等号方向不变;而在用同一个负数去乘(或除)不等式两边时,不等号要改变方向.这是在不等式变形时应特别注意的地方.
(三)教学过程
1.创设情境,复习引入
什么是等式?等式的基本性质是什么?
学生活动:独立思考,指名回答.
教师活动:注意强调等式两边都乘以或除以(除数不为0)同一个数,所得结果仍是等式.
请同学们继续观察习题:
(1)用“>”或“<”填空.
①7+3____4+3 ②7+(-3)____4+(-3)
③7×3____4×3 ④7×(-3)____4×(-3)
(2)上述不等式中哪题的不等号与7>4一致?
学生活动:观察思考,两个(或几个)学生回答问题,由其他学生判断正误.
【教法说明】设置上述习题是为了温故而知新,为学习本节内容提供必要的知识准备.
不等式有哪些基本性质呢?研究时要与等式的性质进行对比,大家知道,等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式(实质是移项法则),请同学们观察①②题,并猜想出不等式的性质.
学生活动:观察思考,猜想出不等式的性质.
教师活动:及时纠正学生叙述中出现的问题,特别强调指出:“仍是不等式”包括两种情况,说法不确切,一定要改为“不等号的方向不变或者不等号的方向改变.”
师生活动:师生共同叙述不等式的性质,同时教师板书.
不等式基本性质1 不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.
对比等式两边都乘(或除以)同一个数的性质(强调所乘的数可正、可负、也可为0)请大家思考,不等式类似的性质会怎样?
学生活动:观察③④题,并将题中的3换成5,-3换成一5,按题的要求再做一遍,并猜想讨论出结论.
【教法说明】观察时,引导学生注意不等号的方向,用彩色粉笔标出来,并设疑“原因何在?”两边都乘(或除以)同一个负数呢?0呢?为什么?
师生活动:由学生概括总结不等式的其他性质,同时教师板书.
不等式基本性质2 不等式两边都乘(或除以)同一个正数,不等号的方向不变.
不等式基本性质3 不等式两边都乘(或除以)同一个负数,不等号的方向改变.
师生活动:将不等式-2<6两边都加上7,-9,两边都乘3,-3试一试,进一步验证上面得出的三条结论.
学生活动:看课本第57~58页有关不等式性质的叙述,理解字句并默记.
强调:要特别注意不等式基本性质3.
实质:不等式的三条基本性质实质上是对不等式两边进行“+”、“-”、“×”、“÷”四则运算,当进行“+”、“-”法时,不等号方向不变;当乘(或除以)同一个正数时,不等号方向不变;只有当乘(或除以)同一个负数时,不等号的方向才改变.
不等式的基本性质与等式的基本性质有哪些区别、联系?
学生活动:思考、同桌讨论.
归纳:只有乘(或除以)负数时不同,此外都类似.下面尝试用数学式子表示不等式的三条基本性质.
师生活动:学生思考出答案,教师订正,并强调不等式性质3的应用.
注意:不等式除了上述性质外,还有以下性质:①若 ,则 .②若 ,且 ,则 ,这些先不要向学生说明.
2.尝试反馈,巩固知识
请学生先根据自己的理解,解答下面习题.
例1 根据不等式的基本性质,把下列不等式化成 或 的形式.
(1) (2) (3) (4)
学生活动:学生独立思考完成,然后一个(或几个)学生回答结果.
教师板书(1)(2)题解题过程.(3)(4)题由学生在练习本上完成,指定两个学生板演,然后师生共同判断板演是否正确.
解:(l)根据不等式基本性质1,不等式的两边都加上2,不等号的方向不变.
所以
(2)根据不等式基本性质1,两边都减去 ,得
(3)根据不等式基本性质2,两边都乘以2,得
(4)根据不等式基本性质3,两边都除以-4得
【教法说明】解题时要引导学生与解一元一次方程的思路进行对比,并将原题与或 对照,看用哪条性质能达到题目要求,要强调每步的理论依据,尤其要注意不等式基本性质3与基本性质2的区别,解题时书写要规范.
例2 设 ,用“<”或“>”填空.
(1) (2) (3)
学生活动:在练习本上完成例2,由3个学生板演完成后,其他学生判断板演是否正确,最后与书中正确解题格式对照.
解:(1)因为 ,两边都减去3,由不等式性质1,得
(2)因为 ,且2>0,由不等式性质2,得
(3)因为 ,且-4<0,由不等式性质3,得
教师活动:巡视辅导,了解学生作题的实际情况,及时给予纠正或鼓励.
注意问题:例2(3)是根据不等式性质3,不等号方向应改变.这是学生做题时易出错误之处.
【教法说明】要让学生明白推理要有依据,以后作类似的练习时,都写出根据,逐步培养学生的逻辑思维能力.
【教法说明】以多种形式处理习题可以激发学生学习热情,提高课堂效率;(2)练习第③④题易出错,教师应讲清楚.
(四)总结、扩展
1.本节重点:
(1)掌握不等式的三条基本性质,尤其是性质3.
(2)能正确应用性质对不等式进行变形.
2.注意事项:
(1)要反复对比不等式性质与等式性质的异同点.
(2)当不等式两边同乘(或除以)同一个数时,一定要看清是正数还是负数,对于未给定范围的字母,应分情况讨论.
3.考点剖析:
不等式的基本性质是历届中考中的重要考点,常见题型是选择题和填空题.
八、布置作业
(一)必做题:P61 A组4,5.
(二)选做题:P62 B组1,2,3.
参考答案
九、板书设计
6.1 不等式和它的基本性质(二)
一、不等式的基本性质
1.不等式两边都加上或减去同一个数或同一个整式,不等号的方向不变。
2.不等式两边都乘(或除以)同一个正数,不等号方向不变。
3.不等式两边都乘(或除以)同一个负数,不等号方向改变 。
二、应用
例1 解(1)(2)
例2 解(1)(2)
三、小结
注意不等式性质3的应用.
十、背景知识与课外阅读
盒子里有红、白、黑三种球,若白球的个数不少于黑球的一半,且不多于红球的 ,又白球和黑球的和至少是55,问盒中红球的个数最少是多少个?
初一数学不等式教学案例三
不等式和它的基本性质
教学建议
一、知识结构
二、重点、难点分析
本节教学的重点是不等式的三条基本性质.难点是不等式的基本性质3.掌握不等式的三条基本性质是进一步学习一元一次不等式(组)的解法等后续知识的基础.
1.不等式的概念
用不等号(“<”、“>”或“≠”表示不等关系的式子,叫做不等式.
另外, (“≥”是把“>”、“=”)结合起来,读作“大于或等于”,或记作“≮”,亦即“不小于”)、 (“≤”是把“<”、“=”结合起来,读作“小于或等于”,或记作“≯”,也就是“不大于”)等等,也都是不等式.
2.当不等式的两边都加上或乘以同一个正数或负数时,所得结果仍是不等式.但变形所得的不等式中不等号的方向,有的与原不等式中不等号的方向相同,有的则不相同.因而叙述时不能笼统说成“……仍是不等式”,而应明确变形所得的不等式中不等号的方向.
3.不等式成立与不等式不成立的意义
例如:在不等式 中,字母 表示未知数.当 取某一数值 时, 的值小于2,我们就说当 时,不等式 成立;当 取另外某一个数值 时,的值不小于2,我们就说当 时, 不等式不成立.
4.不等式的三条基本性质是不等式变形的重要依据,性质1、2类似等式性质,不等号的方向不改变,性质3不等号的方向改变,这是不等式独有的性质,也是初学者易错的地方,因此要特别注意.
一、素质教育目标
(-)知识教学点
1.了解不等式的意义.
2.理解什么是不等式成立,掌握不等式是否成立的判定方法.
3.能依题意准确迅速地列出相应的不等式.
(二)能力训练点
1.培养学生运用类比方法研究相关内容的能力.
2.训练学生运用所学知识解决实际问题的能力.
(三)德育渗透点
通过引导学生分析问题、解决问题,培养他们积极的参与意识,竞争意识.
(四)美育渗透点
通过不等式的学习,渗透具有不等量关系的数学美.
二、学法引导
1.教学方法:观察法、引导发现法、讨论法.
2.学生学法:只有准确理解不等号的几种形式的意义,才能在实际中进行灵活的运用.
三、重点·难点·疑点及解决办法
(一)重点
掌握不等式是否成立的判定方法;依题意列出正确的不等式.
(二)难点
依题意列出正确的不等式
(三)疑点
如何把题目中表示不等关系的词语准确地翻译成相应的数学符号.
(四)解决方法
在正确理解不等号的意义后,通过抓住体现不等量的关系的词语就能准确列出相应的不等式.
四、课时安排
一课时.
五、教具学具准备
投影仪或电脑、自制胶片.
六、师生互动活动设计
1.创设情境,通过复习有关等式的知识,自然导入新课的学习,激发学生的学习热情.
2.从演示的有关实验中,探究相应的不等量关系,从学生的讨论、分析中探究代数式的不等关系的几种常见形式.
3.从师生的互动讲解练习中掌握不等式的有关知识,并培养学生具有一定的灵活应用能力.
七、教学步骤
(一)明确目标
本节课主要学习依题意正确迅速地列出不等式.
(二)整体感知
通过复习等式创设情境,自然过渡到不等式的学习过程中,又通过细心的分析、审题寻找出正确的不等量关系,从而列出正确的不等式.
(三)教学过程
1.创设情境,复习导入
我们已经学过等式和它的基本性质,请同学们观察下面习题,思考并回答:
(1)什么是等式?等式中“=”两侧的代数式能否交换?“=”是否具有方向性?
(2)已知数值:-5, ,3,0,2,7,判断:上述数值哪些使等式 成立?哪些使等式 不成立?
学生活动:首先自己思考,然后指名回答.
教师释疑:①“=”表示相等关系,它没有方向性,等号两例可以相互交换,有时不交换只是因为书写习惯,例如方程的解 .
②判断数取何值,等式 成立和不成立实质上是在判断给定的数值是否为方程 的解,因为等式 为一元一次方程,它只有惟一解 ,所以等式 只有在 时成立,此外,均不成立.
【教法说明】设置上述习题,目的是使学生温故而知新,为学习本节内容提供必要的知识准备.
2.探索新知,讲授新课
不等式和等式既有联系,又有区别,大家在学习时要自觉进行对比,请观察演示实验并回答:演示说明什么问题?
师生活动:教师演示课本第54页天平称物重的两个实例(同时指出演示中物重为 克,每个砝码重量均为1克),学生观察实验,思考后回答:演示中天平若不平衡说明天平两边所放物体的重量不相等.
【教法说明】结合实际生活中同类量之间具有一种不相等关系的实例引入不等式的知识,能激发学生的学习兴趣.
在实际生活中,像演示这样同类量之间具有不相等关系的例子是大量的、普遍的,这种关系需用不等式来表示.那么什么是不等式呢?请看:
提问:(l)上述式子中有哪些表示数量关系的符号?(2)这些符号表示什么关系?(3)这些符号两侧的代数式可以随意交换位置吗?(4)什么叫不等式?
学生活动:观察式予,思考并回答问题.
答案:(1)分别使用“<”“>”“≠”.(2)表示不等关系.(3)不可以随意互换位置.(4)用不等号表示不等关系的式子叫不等式.
不等号除了“<”“>”“≠”之外,还有无其他形式?
学生活动:同桌讨论,尝试得到结论.
教师释疑:①不等号除“<”“>”“≠”外,还有“≥”“≤”两种形式(“≥”是指“>”与“=”结合起来,读作“大于或等于”,也可理解成“不小于”;同理“≤”读作“小于或等于”,也可理解成“不大于”.)现在,我们来研究用“>”“<”表示的不等式.
②不等号“>”“<”表示不等关系,它们具有方向性,因而不等号两侧不可互交换,例如 ,不能写成 .
【教法说明】①通过学生自己观察思考,进而猜测出不等式的意义,这种教法充分发挥了学生的主体作用.
②通过教师释疑,学生对不等号的种类及其使用有了进一步的了解.
3.尝试反馈,巩固知识
同类量之间的大小关系常用“>”“<”来表示,请同学们根据自己对不等式的理解,解答习题.
(1)用“<”或“>”境空.(抢答)
①4___-6;②-1____0③-8___-3;④-4.5___-4.
(2)用不等式表示:
① 是正数;② 是负数;③ 与3的和小于6;④ 与2的差大于-1;⑤ 的4倍大于等于7;⑥ 的一半小于3.
(3)学生独立完成课本第55页例1.
注意:不是所有同类量都可以比较大小,例如不在同一直线上的两个力,它们只有等与不等关系,而无大小关系,这一点无需向学生说明.
学生活动:第(l)题抢答;第(2)题在练习本上完成,由两个学生板演,完成之后,由学生判断板演是否正确
教师活动:巡视辅导,统计做题正确的人数,同时给予肯定或鼓励.
【教法说明】①第(1)题是为了调动积极性,强化竞争意识;第(2)题则是为了训练学生书面表述能力.
②教学时要注意引导学生将题目中表示不等关系的词语翻译成相应的不等号,例如“小于”用“<”表示,“大于等于”用“≥”表示.
下面研究什么使不等式成立,请同学们尝试解答习题:
已知数值;-5, ,3,0,2,-2.5,5.2;
(1)判断:上述数值哪些使不等式 成立?哪些使 不成立?
(2)说出几个使不等式 成立的 的数值;说出几个使 不成立的数值.
学生活动:同桌研究讨论,尝试得到答案.
教师活动:引导学生回答,使未知数 的取值不仅有正整数,还有负数、零、小数.
师生总结:判定不等式是否成立的方法就是:如果不等号两侧数值的大小关系与不等另一致,称不等式成立;否则不成立.例如对于 ;当 时, 的值小于6,就说 时不等式 成立;当 时, 的值不小于6,就说 时, 不成立.
【教法说明】通过学生自己举例,培养他们运用已有的知识探索新知识的意识,同时也活跃了课堂气氛.
4.变式训练,培养能力
(1)当 取下列数值时,不等式 是否成立?
-7,0,0.5,1, ,10
(2)①用不等式表示: 与3的和小于等于(不大于)6;
②写出使上述不等式成立的几个 的数值;
③ 取何值时,不等式 总成立?取何值时不成立?
学生在练习本上完成1题,2题,同桌订正;教师抽查,强调注意事项.
【教法说明】
①使学生进一步了解使不等式成立的未知数的值可以有多个,为6.2讲解不等式的解集做准备.
②强化思维能力和归纳总结能力.
(四)总结、扩展
学生小结,师生共同完善:
本节课的重点内容:1.掌握不等式是否成立的判断方法;2.依题意列出正确的不等式.
注意:列不等式时,要注意把表示不等关系的词语用相庆的不等号来表示.例如“不大于”用“≤”表示,而不用“<”表示,这一点学生容易出现错误.
八、布置作业
(一)必做题:P61 A组1,2,3.
(二)选做题:
1.单项选择
(1)绝对值小于3的非负整数有( )
A.1,2 B.0,1 C.0,1,2 D.0,1,3
(2)下列选项中,正确的是( )
A. 不是负数,则
B. 是大于0的数,则
C. 不小于-1,则
D. 是负数,则
2.依题意列不等式
(1) 的3倍与7的差是非正数
(2) 与6的和大于9且小于12
(3)A市某天的最低气温是-5℃,最高气温是10℃,设这天气温为 ℃,则 满足的条件是____________________.
【设计说明】1.再现本节重点,巩固所学知识.
2.有层次性地布置作业,可以调动全体学生的学习积极性,这也是实施素质教育的具体体现.
参考答案
1.<,<,>,>,<,<
2.5.2,6,8.3,11是 的解,-10,-7,-4. 5,0,3不是解
3.(1) (2) (3) (4)
(二)1.(1)C (2)D
2.(1) (2) (3)
九、板书设计
6.1 不等式和它的基本性质(一)
一、什么叫不等式?
用:“>”“<”“≠”“≥”“≤”表示不等关系的式子叫不等式.
重点研究“>”“<”
二、依题意列不等式
“大于”“>”;“小于”“<”;“不大于”“≤”;“不小于”“≥”;
三、不等式 能否成立
时, (√); 时, (×);
时, (×)
四、归纳总结重点
(一)依题意列不等式.
(二)会判断不等式是否成立.
十、背景知识与课外阅读
费 马 数
费马(P.de Fermat)是17世纪法国著名数学家,是法国南部土鲁斯议会的议员,他在数论、解析几何、概率论三个方面都有重要贡献.他无意发表自己的著作,平生没有完整的著作问世.去世后,人们才把他写在书页空白处和给朋友的书信中,以及一些陈旧手稿中的论述收集汇编成书.费马特别爱好数论,在这方面有好几项成就,如费马数、费马小定理、费马大定理等.
费马于1640年前后,在验算了形如
的数当 的值分别为
3,5,17,257,65537
后(请注意这些数均为质数)便宣称:对于为任何自然数,是质数.
大约过了100年,1732年数学家欧拉(L.Euler)指出
从而否定了费马的上述结论(猜想).
尔后,人们又对 进行了大量研究,发现在 中,除了上述五个质数外,人们尚未再发现新的质数.
虽然费马的这个猜想是错误的,但为了纪念这位数学家,人们仍把这种形式的数叫做费马数.