高一物理必修2教案
物理一直是高中理科教学中难度较高的学科,由于知识晦涩难懂,理论抽象单调,很多学生对其缺乏兴趣,因而整体学习的积极性不高。这就需要教师在教学过程中提高学生的课堂注意力与学习积极性。下面学习啦小编为你整理了高一物理必修2教案,希望对你有帮助。
高一物理必修2教案:功
一、教学目标
1.理解功的概念:
(1)知道做机械功的两个不可缺少的因素,知道做功和"工作"的区别;
(2)知道当力与位移方向的夹角大于90°时,力对物体做负功,或说物体克服这个力做了功。
2.掌握功的计算:
(1)知道计算机械功的公式W=Fscosα;知道在国际单位制中,功的单位是焦耳(J);知道功是标量。
(2)能够用公式W=Fscosα进行有关计算。
二、重点、难点分析
1.重点是使学生在理解力对物体做功的两个要素的基础上掌握机械功的计算公式。
2.物体在力的方向上的位移与物体运动的位移容易混淆,这是难点。
3.要使学生对负功的意义有所认识,也较困难,也是难点。
三、教具
带有牵引细线的滑块(或小车)。
四、主要教学过程
(一)引入新课
功这个词我们并不陌生,初中物理中学习过功的一些初步知识,今天我们又来学习功的有关知识,绝不是简单地重复,而是要使我们对功的认识再提高一步。
(二)教学过程设计
1.功的概念
先请同学回顾一下初中学过的与功的概念密切相关的如下两个问题:什么叫做功?谁对谁做功?然后做如下总结并板书:
(1)如果一个物体受到力的作用,并且在力的方向上发生了位移,物理学中就说这个力对物体做了功。
然后演示用水平拉力使滑块沿拉力方向在讲桌上滑动一段距离,并将示意图画到黑板上,如图1所示,与同学一起讨论如下问题:在上述过程中,拉力F对滑块是否做了功?滑块所受的重力mg对滑块是否做了功?桌面对滑块的支持力N是否对滑块做了功?强调指出,分析一个力是否对物体做功,关键是要看受力物体在这个力的方向上是否有位移。至此可作出如下总结并板书:
(2)在物理学中,力和物体在力的方向上发生的位移,是做功的两个不可缺少的因素。
2.功的公式
就图1提出:力F使滑块发生位移s这个过程中,F对滑块做了多少功如何计算?由同学回答出如下计算公式:W=Fs。就此再进一步提问:如果细绳斜向上拉滑块,如图2所示,这种情况下滑块沿F方向的位移是多少?与同学一起分析并得出这一位移为s cos α。至此按功的前一公式即可得到如下计算公式:
W=Fscosα
再根据公式W=Fs做启发式提问:按此公式考虑,只要F与s在同一直线上,乘起来就可以求得力对物体所做的功。在图2中,我们是将位移分解到F的方向上,如果我们将力F分解到物体位移s的方向上,看看能得到什么结果?至此在图2中将F分解到s的方向上得到这个分力为Fcosα,再与s相乘,结果仍然是W=Fscosα。就此指出,计算一个力对物体所做的功的大小,与力F的大小、物体位移s的大小及F和s二者方向之间的夹角α有关,且此计算公式有普遍意义(对计算机械功而言)。至此作出如下板书:
W=Fscosα
力对物体所做的功,等于力的大小、位移的大小、力和位移的夹角的余弦三者的乘积。
接下来给出F=100N、s=5m、α=37°,与同学一起计算功W,得出W=400N·m。就此说明1N·m这个功的大小被规定为功的单位,为方便起见,取名为焦耳,符号为J,即1J=1N·m。最后明确板书为:
在国际单位制中,功的单位是焦耳(J)
1J=1N·m
3.正功、负功
(1)首先对功的计算公式W=Fscosα的可能值与学生共同讨论。从cos α的可能值入手讨论,指出功W可能为正值、负值或零,再进一步说明,力F与s间夹角α的取值范围,最后总结并作如下板书:
当0°≤α<90°时,cosα为正值, W为正值,称为力对物体做正功,或称为力对物体做功。
当α=90°时,cosα=0,W=0,力对物体做零功,即力对物体不做功。
当90°<α≤180°时,cosα为负值, W为负值,称为力对物体做负功,或说物体克服这个力做功。
(2)与学生一起先讨论功的物理意义,然后再说明正功、负功的物理意义。
①提出功是描述什么的物理量这个问题与学生讨论。结合图1,使学生注意到力作用滑块并持续使滑块在力的方向上运动,发生了一段位移,引导学生认识其特征是力在空间位移上逐渐累积的作用过程。
然后就此提出:这个累积作用过程到底累积什么?举如下两个事例启发学生思考:
a.一辆手推车上装有很多货物,搬运工推车要用很大的力。向前推一段距离就要休息一会儿,然后有了力气再推车走。
b.如果要你将重物从一楼向六楼上搬,搬运过程中会有什么感觉?
首先使学生意识到上述两个过程都是人用力对物体做功的过程,都要消耗体能。就此指出做功过程是能量转化过程,做功越多,能量转化得越多,因而功是能量转化的量度。能量是标量,相应功也是标量。板书如下:
功是描述力在空间位移上累积作用的物理量。功是能量转化的量度,功是标量。
②在上述对功的意义认识的基础上,讨论正功和负功的意义,得出如下认识并板书:
正功的意义是:力对物体做功向物体提供能量,即受力物体获得了能量。
负功的意义是:物体克服外力做功,向外输出能量(以消耗自身的能量为代价),即负功表示物体失去了能量。
4.例题讲解或讨论
例1.课本p.110上的〔例题〕是功的计算公式的应用示范。分析过程中应使学生明确:推力F对箱子所做的功,实际上就是推力F的水平分力Fcosα对箱子所做的功,而推力 F的竖直分力Fsinα与位移s的方向是垂直的,对箱子不做功。
例2.如图3所示,ABCD为画在水平地面上的正方形,其边长为a,P为静止于A点的物体。用水平力F沿直线 AB拉物体缓慢滑动到B点停下,然后仍用水平力F沿直线BC拉物体滑动到C点停下,接下来仍用水平力F沿直线CD拉物体滑动到D点停下,最后仍用水平力F沿直线DA拉物体滑动到A点停下。若后三段运动中物体也是缓慢的,求全过程中水平力F对物体所做的功是多少?
此例题先让学生做,然后找出一个所得结果是W=0的学生发言,此时会有学生反对,并能说出W=4Fa才是正确结果。让后者讲其思路和做法,然后总结,使学生明确在每一段位移a中,力F都与a同方向,做功为Fa,四个过程加起来就是4Fa。强调:功的概念中的位移是在这个力的方向上的位移,而不能简单地与物体运动的位移画等号。要结合物理过程做具体分析。
例3.如图4所示,F1和F2是作用在物体P上的两个水平恒力,大小分别为:F1=3N,F2=4N,在这两个力共同作用下,使物体P由静止开始沿水平面移动5m距离的过程中,它们对物体各做多少功?它们对物体做功的代数和是多少?F1、F2的合力对P做多少功?
此例题要解决两个方面的问题,一是强化功的计算公式的正确应用,纠正学生中出现的错误,即不注意力与位移方向的分析,直接用3N乘5m、4N乘5m这种低级错误,引导学生注意在题目没有给出位移方向时,应该根据动力学和运动学知识作出符合实际的判断;二是通过例题得到的结果,使学生知道一个物体所受合力对物体所做的功。等于各个力对物体所做的功的代数和,并从合力功与分力功所遵从的运算法则,深化功是标量的认识。
解答过程如下:位移在F1、F2方向上的分量分别为s1=3m、s2=4m,F1对P做功为9J,F2对P做功为16J,二者的代数和为25J。F1、F2的合力为5N,物体的位移与合力方向相同,合力对物体做功为W=Fs=5N×5m=25J。
例4.如图5所示。A为静止在水平桌面上的物体,其右侧固定着一个定滑轮O,跨过定滑轮的细绳的P端固定在墙壁上,于细绳的另一端Q用水平力F向右拉,物体向右滑动s的过程中,力F对物体做多少功?(上、下两段绳均保持水平)
本例题仍重点解决计算功时对力和位移这两个要素的分析。如果着眼于受力物体,它受到水平向右的力为两条绳的拉力,合力为2F。因而合力对物体所做的功为W=2Fs;如果着眼于绳子的Q端,即力F的作用点,则可知物体向右发主s位移过程中,Q点的位移为2s,因而力F拉绳所做的功W=F·2s=2Fs。两种不同处理方法结果是相同的。
五、课堂小结
1.对功的概念和功的物理意义的主要内容作必要的重复(包括正功和负功的意义)。
2.对功的计算公式及其应用的主要问题再作些强调。
六、说明
1.考虑到功的定义式W=Fscosα与课本上讲的功的公式相同,特别是对式中s的解释不一,有物体位移与力的作用点的位移之分,因而没有给出明确的功的定义的文字表达。实际问题中会用功的公式正确进行计算就可以了。从例题4可以看出,定义一个力对物体所做的功,将位移解释为力的作用点在力的方向上的位移是比较恰当的。如果将位移解释为受力物体在力的方向上的位移,学生会得出W=Fs这一错误结果,还会理直气壮地坚持错误,纠正起来就困难多了。
2.由于对功的物理意义的讲解是初步的,因而对正功、负功的物理意义的讲解也是初步的。这节课中只是讲到受力物体得到能量还是失去能量这个程度。在学习了机械能守恒定律之后,再进一步作出说明。在机械能守恒的物理过程中,有重力做功,地球上的一个物体的机械能并没有增加,因而正、负功的意义就不能用能量得失关系去说明了。在这种情况下,重力做正功,表示势能向动能转化;重力做负功,表示动能向势能转化,这里的正功、负功不再表示能量得失,而是表示能量转化方向的
高一物理必修2教案:机械能守恒定律
一、教学目标
1.在已经学习有关机械能概念的基础上,学习机械能守恒定律,掌握机械能守恒的条件,掌握应用机械能守恒定律分析、解决问题的基本方法。
2.学习从功和能的角度分析、处理问题的方法,提高运用所学知识综合分析、解决问题的能力。
二、重点、难点分析
1.机械能守恒定律是本章教学的重点内容,本节教学的重点是使学生掌握物体系统机械能守恒的条件;能够正确分析物体系统所具有的机械能;能够应用机械能守恒定律解决有关问题。
2.分析物体系统所具有的机械能,尤其是分析、判断物体所具有的重力势能,是本节学习的难点之一。在教学中应让学生认识到,物体重力势能大小与所选取的参考平面(零势面)有关;而重力势能的变化量是与所选取的参考平面无关的。在讨论物体系统的机械能时,应先确定参考平面。
3.能否正确选用机械能守恒定律解决问题是本节学习的另一难点。通过本节学习应让学生认识到,从功和能的角度分析、解决问题是物理学的重要方法之一;同时进一步明确,在对问题作具体分析的条件下,要能够正确选用适当的物理规律分析、处理问题。
三、教具
演示物体在运动中动能与势能相互转化。
器材包括:麦克斯韦滚摆;单摆;弹簧振子。
四、主要教学过程
(一)引入新课
结合复习引入新课。
前面我们学习了动能、势能和机械能的知识。在初中学习时我们就了解到,在一定条件下,物体的动能与势能(包括重力势能和弹性势能)可以相互转化,下面我们观察演示实验中物体动能与势能转化的情况。
[演示实验] 依次演示麦克斯韦滚摆、单摆和弹簧振子,提醒学生注意观察物体运动中动能、势能的变化情况。
通过观察演示实验,学生回答物体运动中动能、势能变化情况,教师小结:
物体运动过程中,随动能增大,物体的势能减小;反之,随动能减小,物体的势能增大。
提出问题:上述运动过程中,物体的机械能是否变化呢?这是我们本节要学习的主要内容。
(二)教学过程设计
在观察演示实验的基础上,我们从理论上分析物理动能与势能相互转化的情况。先考虑只有重力对物体做功的理想情况。
1.只有重力对物体做功时物体的机械能
问题:质量为m的物体自由下落过程中,经过高度h1处速度为v1,下落至高度h2处速度为v2,不计空气阻力,分析由h1下落到h2过程中机械能的变化(引导学生思考分析)。
分析:根据动能定理,有
下落过程中重力对物体做功,重力做功在数值上等于物体重力势能的变化量。取地面为参考平面,有
WG=mgh1-mgh2
由以上两式可以得到
引导学生分析上面式子所反映的物理意义,并小结:下落过程中,物体重力势能转化为动能,此过程中物体的机械能总量不变。
指出问题:上述结论是否具有普遍意义呢?作为课后作业,请同学们课后进一步分析物体做平抛和竖直上抛运动时的情况。
明确:可以证明,在只有重力做功的情况下,物体动能和势能可以相互转化,而机械能总量保持不变。
提出问题:在只有弹簧弹力做功时,物体的机械能是否变化呢?
2.弹簧和物体组成的系统的机械能
以弹簧振子为例(未讲振动,不必给出弹簧振子名称,只需讲清系统特点即可),简要分析系统势能与动能的转化。
明确:进一步定量研究可以证明,在只有弹簧弹力做功条件下,物体的动能与势能可以相互转化,物体的机械能总量不变。
综上所述,可以得到如下结论:
3.机械能守恒定律
在只有重力和弹簧弹力对物体做功的情况下,物体的动能和势能可以相互转化,物体机械能总量保持不变。这个结论叫做机械能守恒定律。
提出问题:学习机械能守恒定律,要能应用它分析、解决问题。下面我们通过具体问题的分析来学习机械能守恒定律的应用。在具体问题分析过程中,一方面要学习应用机械能守恒定律解决问题的方法,另一方面通过问题分析加深对机械能守恒定律的理解与认识。
4.机械能守恒定律的应用
例1.在距离地面20m高处以15m/s的初速度水平抛出一小球,不计空气阻力,取g=10m/s2,求小球落地速度大小。
引导学生思考分析,提出问题:
(1)前面学习过应用运动合成与分解的方法处理平抛运动,现在能否应用机械能守恒定律解决这类问题?
(2)小球抛出后至落地之前的运动过程中,是否满足机械能守恒的条件?如何应用机械能守恒定律解决问题?
归纳学生分析的结果,明确:
(1)小球下落过程中,只有重力对小球做功,满足机械能守恒条件,可以用机械能守恒定律求解;
(2)应用机械能守恒定律时,应明确所选取的运动过程,明确初、末状态小球所具有的机械能。
例题求解过程:
取地面为参考平面,抛出时小球具有的重力势能Ep1=mgh,动能
落地时小球的速度大小为
提出问题:请考虑用机械能守恒定律解决问题与用运动合成解决问题的差异是什么?
例2.小球沿光滑的斜轨道由静止开始滑下,并进入在竖直平面内的离心轨道运动,如图所示,为保持小球能够通过离心轨道最高点而不落下来,求小球至少应从多高处开始滑下?已知离心圆轨道半径为R,不计各处摩擦。
提出问题,引导学生思考分析:
(1)小球能够在离心轨道内完成完整的圆周运动,对小球通过圆轨道最高点的速度有何要求?
(2)从小球沿斜轨道滑下,到小球在离心轨道内运动的过程中,小球的机械能是否守恒?
(3)如何应用机械能守恒定律解决这一问题?如何选取物体运动的初、末状态?
归纳学生分析的结果,明确:
(1)小球能够通过圆轨道最高点,要求小球在最高点具有一定速度,即此时小球运动所需要的向心力,恰好等于小球所受重力;
(2)运动中小球的机械能守恒;
(3)选小球开始下滑为初状态,通过离心轨道最高点为末状态,研究小球这一运动过程。
例题求解过程:
取离心轨道最低点所在平面为参考平面,开始时小球具有的机械能E1=mgh。通过离心轨道最高点时,小球速度为v,此时小球的机械能
成完整的圆周运动。
进一步说明:在中学阶段,由于数学工具的限制,我们无法应用牛顿运动定律解决小球在离心圆轨道内的运动。但应用机械能守恒定律,可以很简单地解决这类问题。
例3.长l=80cm的细绳上端固定,下端系一个质量 m=100g的小球。将小球拉起至细绳与竖直方向成60°角的位置,然后无初速释放。不计各处阻力,求小球通过最低点时,细绳对小球拉力多大?取g=10m/s2。
提出问题,引导学生分析思考:
(1)释放后小球做何运动?通过最低点时,绳对小球的拉力是否等于小球的重力?
(2)能否应用机械能守恒定律求出小球通过最低点时的速度?
归纳学生分析结果,明确:
(1)小球做圆周运动,通过最低点时,绳的拉力大于小球的重力,此二力的合力等于小球在最低点时所需向心力;
(2)绳对小球的拉力不对小球做功,运动中只有重力对球做功,小球机械能守恒。
例题求解过程:
小球运动过程中,重力势能的变化量ΔEp=-mgh=-mgl(1-cos60°),
在最低点时绳对小球的拉力大小为
提出问题:通过以上各例题,总结应用机械能守恒定律解决问题的基本方法。
归纳学生的分析,作课堂小结。
五、小结
1.在只有重力做功的过程中,物体的机械能总量不变。通过例题分析要加深对机械能守恒定律的理解。
2.应用机械能守恒定律解决问题时,应首先分析物体运动过程中是否满足机械能守恒条件,其次要正确选择所研究的物理过程,正确写出初、末状态物体的机械能表达式。
3.从功和能的角度分析、解决问题,是物理学研究的重要方法和途径。通过本节内容的学习,逐步培养用功和能的观点分析解决物理问题的能力。
4.应用功和能的观点分析处理的问题往往具有一定的综合性,例如与圆周运动或动量知识相结合,要注意将所学知识融汇贯通,综合应用,提高综合运用知识解决问题的能力。
六、说明
势能是相互作用的物体系统所共有的,同样,机械能也应是物体系统所共有的。在中学物理教学中,不必过份强调这点,平时我们所说物体的机械能,可以理解为是对物体系统所具有的机械能的一种简便而通俗的说法。
猜你感兴趣: