初一数学知识归纳总结有哪些
初一是学生知识奠定的根基时期,所以在初一学好数学的知识点特别重要。以下是学习啦小编分享给大家的初一数学知识归纳总结,希望可以帮到你!
初一数学知识归纳总结
一、:代数初步知识。
1.代数式:用运算符号“+-×÷……”连接数及表示数的字母的式子称为代数式(字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式)
2.列代数式的几个注意事项:
(1)数与字母相乘,或字母与字母相乘通常使用“·”乘,或省略不写;
(2)数与数相乘,仍应使用“×”乘,不用“·”乘,也不能省略乘号;
(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;
(4)带分数与字母相乘时,要把带分数改成假分数形式,如a×应写成a;
(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式;
(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a.
二、:几个重要的代数式(m、n表示整数)。
(1)a与b的平方差是:a2-b2;a与b差的平方是:(a-b)2;
(2)若a、b、c是正整数,则两位整数是:10a+b,则三位整数是:100a+10b+c;
(3)若m、n是整数,则被5除商m余n的数是:5m+n;偶数是:2n,奇数是:2n+1;三个连续整数是:n-1、n、n+1;
(4)若b>0,则正数是:a2+b,负数是:-a2-b,非负数是:a2,非正数是:-a2.
三、:有理数。
1.有理数:
(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;
(2)有理数的分类:①②
(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;
2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.
3.相反数:
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;
(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;
4.绝对值:
(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;
(2)绝对值可表示为:初一上册知识点绝对值的问题经常分类讨论;
(4)|a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a·b|,
5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.
四、:有理数法则及运算规律。
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;
(3)一个数与0相加,仍得这个数.
2.有理数加法的运算律:
(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c).
3.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).
4.有理数乘法法则:
(1)两数相乘,同号为正,异号为负,并把绝对值相乘;
(2)任何数同零相乘都得零;
(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.
5.有理数乘法的运算律:
(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac.
6.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.
7.有理数乘方的法则:
(1)正数的任何次幂都是正数;
五、:乘方的定义。
(1)求相同因式积的运算,叫做乘方;
(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;
(4)据规律底数的小数点移动一位,平方数的小数点移动二位.
3.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.
4.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.
5.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.
6.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.
六、:整式的加减。
1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.
2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.
3.多项式:几个单项式的和叫多项式.
4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)是常见的两个二次三项式.
5.整式:单项式和多项式统称为整式.
七、:整式分类为。
1.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.
2.合并同类项法则:系数相加,字母与字母的指数不变.
3.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.
4.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.
5.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列.
八、:一元一次方程
1.等式与等量:用“=”号连接而成的式子叫等式.注意:“等量就能代入”!
2.等式的性质:
等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;
等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.
3.方程:含未知数的等式,叫方程.
4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!
5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.
6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.
7.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0).
8.一元一次方程的最简形式:ax=b(x是未知数,a、b是已知数,且a≠0).
9.一元一次方程解法的一般步骤:整理方程……去分母……去括号……移项……合并同类项……系数化为1……(检验方程的解).
九、:列一元一次方程解应用题。
(1)读题分析法:…………多用于“和,差,倍,分问题”
仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.
(2)画图分析法:…………多用于“行程问题”
利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.
十、:.列方程解应用题的常用公式。
初一数学学习的建议
1.预习方法的指导。
初一学生往往不善于预习,也不知道预习起什么作用,预习仅是流于形式,草草看一遍,看不出问题和疑点。在指导学生预习时应要求学生做到:一粗读,先粗略浏览教材的有关内容,掌握本节知识的概貌。二细读,对重要概念、公式、法则、定理反复阅读、体会、思考,注意知识的形成过程,对难以理解的概念作出记号,以便带着疑问去听课。方法上可采用随课预习或单元预习。预习前教师先布置预习提纲,使学生有的放矢。实践证明,养成良好的预习习惯,能使学生变被动学习为主动学习,同时能逐渐培养学生的自学能力。
2.听课方法的指导。
在听课方法的指导方面要处理好“听”、“思”、“记”的关系
“听”是直接用感官接受知识,应指导学生在听的过程中注意:(1)听每节课的学习要求;(2)听知识引人及知识形成过程;(3)听懂重点、难点剖析(尤其是预习中的疑点);(4)听例题解法的思路和数学思想方法的体现;(5)听好课后小结。教师讲课要重点突出,层次分明,要注意防止“注入式”、“满堂灌”,一定掌握最佳讲授时间,使学生听之有效。
“思”是指学生思维。没有思维,就发挥不了学生的主体作用。在思维方法指导时,应使学生注意:(1)多思、勤思,随听随思;(2)深思,即追根溯源地思考,善于大胆提出问题;(3)善思,由听和观察去联想、猜想、归纳;(4)树立批判意识,学会反思。可以说“听”是“思”的基储关键,“思”是“听”的深化,是学习方法的核心和本质的内容,会思维才会学习。
“记”是指学生课堂笔记。初一学生一般不会合理记笔记,通常是教师黑板上写什么学生就抄什么,往往是用“记”代替“听”和“思”。有的笔记虽然记得很全,但收效甚微。因此在指导学生作笔记时应要求学生:(1)记笔记服从听讲,要掌握记录时机;(2)记要点、记疑问、记解题思路和方法;(3)记小结、记课后思考题。使学生明确“记”是为“听”和“思”服务的。
掌握好这三者的关系,就能使课堂这一数学学习主要环节达到较完美的境界。
3.深后复习巩固及完成作业方法的指导。
初一学生课后往往容易急于完成书面作业,忽视必要的巩固、记忆、复习。以致出现照例题模仿、套公式解题的现象,造成为交作业而做作业,起不到作业的练习巩固、深化理解知识的应有作用。为此在这个环节的学法指导上要求学生每天先阅读教材,结合笔记记录的重点、难点,回顾课堂讲授的知识、方法,同时记忆公式、定理(记忆方法有类比记忆、联想记忆、直观记忆等)。然后独立完成作业,解题后再反思。在作业书写方面也应注意“写法”指导,要求学生书写格式要规范、条理要清楚。初一学生做到这点很困难。指导时应教会学生(1)如何将文字语言转化为符号语言;(2)如何将推理思考过程用文字书写表达;(3)正确地由条件画出图形。这里教师的示范作用极为重要,开始可有意让学生模仿、训练,逐步使学生养成良好的书写习惯,这对今后的学习和工作都十分重要。
4.小结或总结方法的指导。
在进行单元小结或学期总结时,初一学生容易依赖老师,习惯教师带着复习总结。我认为从初一开始就应培养学生学会自己总结的方法。在具体指导时可给出复习总结的途径。要做到一看:看书、看笔记、看习题,通过看,回忆、熟悉所学内容;二列:列出相关的知识点,标出重点、难点,列出各知识点之间的关系,这相当于写出总结要点;三做:在此基础上有目的、有重点、有选择地解一些各种档次、类型的习题,通过解题再反馈,发现问题、解决问题。最后归纳出体现所学知识的各种题型及解题方法。应该说学会总结是数学学习的最高层次。
学生总结与教师总结应该结合,教师总结更应达到精炼、提高的目的,使学生水平向更高层发展。
初一数学学习方法
1.读的方法。初一同学往往不善于读数学书,在读的过程中,易沿用死记硬背的方法。那么如何有效地读数学书呢?平时应做到:
(1)粗读。先粗略浏览教材的枝干,并能粗略掌握本章节知识的概貌,重、难点;
(2)细读。对重要的概念、性质、判定、公式、法则、思想方法等反复阅读、体会、思考,领会其实质及其因果关系,并在不理解的地方作上记号(以便求教);
(3)研读。要研究知识间的内在联系,研讨书本知识安排意图,并对知识进行分析、归纳、总结,以形成知识体系,完善认知结构。
读书,先求读懂,再求读透,使得自学能力和实际应用能力得到很好的训练。
2.听的方法。“听”是直接用感官去接受知识,而初一同学往往对课程增多、课堂学习量加大不适应,顾此失彼,精力分散,使听课效果下降。因此应在听课的过程中注意做到:
(1) 听每节课的学习要求;
(2) 听知识的引入和形成过程;
(3) 听懂教学中的重、难点(尤其是预习中不理解的或有疑问的知识点);
(4) 听例题关键部分的提示及应用的数学思想方法;
(5) 听好课后小结。
3.思考的方法。“思”指同学的思维。数学是思维的体操,学习离不开思维,
数学更离不开思维活动,善于思考则学得活,效率高;不善于思考则学得死,效果差。可见,科学的思维方法是掌握好知识的前提。七年级学生的思维往往还停留在小学的思维中,思维狭窄。因此在学习中要做到:
(1) 敢于思考、勤于思考、随读随思、随听随思。在看书、听讲、练习时要多思考;
(2) 善于思考。会抓住问题的关键、知识的重点进行思考;
(3) 反思。要善于从回顾解题策略、方法的优劣进行分析、归纳、总结。
4.问的方法。孔子曰:“敏而好学,不耻不问。” 爱因斯坦说过:“提出问题比解决问题更重要。”问能解惑,问能知新,任何学科的学习无不是从问题开始的。但七年级同学往往不善于问,不懂得如何问。因此,同学在平时学习中应掌握问问题的一些方法,主要有:
(1) 追问法。即在某个问题得到回答后,顺其思路对问题紧追不舍,刨根到底继续发问;
(2) 反问法。根据教材和教师所讲的内容,从相反的方向把问题提出来;
(3) 类比提问法。据某些相似的概念、定理、性质等的相互关系,通过比较和类推提出问题;
(4) 联系实际提问法。结合某些知识点,通过对实际生活中一些现象的观察和分析提出问题。
此外,在提问时不仅要问其然,还要问其所以然。
5.记笔记的方法。很大一部分学生认为数学没有笔记可记,有记笔记的学生也是记得不够合理。通常是教师在黑板上所写的都记下来,用“记”代替“听”和“思”。
有的笔记虽然记得很全,但收效甚微。因此,学生作笔记时应做到以下几点:
(1) 在“听”,“思”中有选择地记录;
(2) 记学习内容的要点,记自己有疑问的疑点,记书中没有的知识及教师补充的知识点;
(3) 记解题思路、思想方法;
(4) 记课堂小结。并使学生明确笔记是为补充“听”“思”的不足,是为最后复习准备的,好的笔记能使复习达到事倍功半的效果。
猜你喜欢: