学习啦>学习方法>通用学习方法>复习方法>

苏教版中考数学复习专题训练有哪些(2)

欣怡分享

  12.若△ ∽△ 且相似比为 △ ∽△ 且相似比为 则

  △ 与△ 的相似比为(  )

  A. B. C. 或 D.

  二、填空题(每小题3分,共24分)

  13.已知 y 与 2x+1 成反比例,且当 x=1 时,y=2,那么当 x=0 时,y= .

  14.(2013•陕西中考)如果一个正比例函数的图象与反比例函数 的图象交于 、 两点,那么 的值为________.

  15.若梯形的下底长为x,上底长为下底长的 ,高为y,面积为60,则y与x的函数解析式为__________.(不考虑x的取值范围)

  16.反比例函数 (k>0)的图象与经过原点的直线 相交于A、B两点,已知A点的坐标为(2,1),那么B点的坐标为 .

  17.在比例尺为1∶500 000的某省地图上,量得A地到B地的距离约为46厘米,则A地到B地的实际距离约为 千米.

  18.如图是一个边长为1的正方形组成的网格,△ 与△ 都是格点三角形(顶点在网格交点处),并且△ ∽△ 则△ △ 的相似比是 .

  19.如图所示,EF是△ABC的中位线,将 沿AB方向平移到△EBD的位置,点D在BC上,已知△AEF的面积为5,则图中阴影部分的面积为 .

  20.如图所示,在平行四边形 中 是对角线BD上的点,且EF∥AB,DE∶EB=2∶3,EF=4,则CD的长为 .

  三、解答题(共60分)

  21.(10分)(2013•湖北宜昌中考)如图①所示,在△ABC中,∠BAC=90°,AB=AC,AO⊥BC于点O,F是线段AO上的点(与 不重

  重合),∠EAF=90°,AE=AF,连接FE,FC,BE,BF.

  ① ②

  第21题图

  (1)求证:BE=BF.

  (2)如图②所示,若将△AEF绕点 旋转,使边AF在∠BAC的内部,延长CF交AB于点 交BE于点 .

  ①求证:△AGC∽△KGB;

  ②当△BEF为等腰直角三角形时,请你直接写出AB∶BF的值.

  22.(8分)(2013•兰州中考)如图所示,已知反比例函数 的图象与函数 的图象交于点A(1,4)和点B(m,-2).

  (1)求这两个函数的表达式;

  (2)观察图象,当x>0时,直接写出 时自变量x的取值范围;

  (3)如果点C与点A关于x轴对称,求△ABC的面积.

  23.(8分)如图所示,在直角坐标系中,O为坐标原点. 已知反比例函数 的图象经过点A(2,m),过点A作AB⊥x轴于点B,且△AOB的面积为 .

  (1)求k和m的值;

  (2)点C(x,y)在反比例函数 的图象上,求当1≤x≤3时函数值y的取值范围;

  (3)过原点O的直线与反比例函数 的图象交于P、Q两点,试根据图象直接写出线段PQ长度的最小值.

  24.(8分)已知反比例函数 (k为常数,k≠0)的图象经过点

  A(2,3).

  (1)求这个函数的解析式;

  (2)判断点B(-1,6),C(3,2)是否在这个函数的图象上;

  (3)当-3

  25.(8分)在比例尺为1∶50 0 00的地图上,一块多边形地区的周长是72 cm,多边形的两个顶点 、 之间的距离是25 cm,求这个地区的实际边界长和 、 两地之间的实际距离.

  26.(8分)已知:如图所示,在△ 中 ∥ 点 在边 上 与 相交于点 且∠ .

  求证:(1)△ ∽△ ;

  (2)

  27.(10分)制作一种产品,需先将材料加热达到60 ℃后,再进行操作.设该材料温度为

  y(℃),从加热开始计算的时间为x(分钟).据了解,当该材料加热时,温度y与时间x成函数关系;停止加热进行操作时,温度y与时间x成反比例关系(如图).已知该材料在操作加工前的温度为15 ℃,加热5分钟后温度达到60 ℃.

  (1)分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;

  (2)根据工艺要求,当材料的温度低于15 ℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?

  1.A 解析:因为函数 的图象经过点(1,-1),所以k=-1,所以y=kx-2=-x-2,根据函数的图象可知不经过第一象限.

  2.A 解析:由 ,知函数 的图象分别位于第一、三象限;由 ,知函数 的图象经过第二、三、四象限,故选A.

  3.C 解析:当k>0时,反比例函数的图象在第一、三象限,当x<0时,反比例 函数的图象在第三象限,所以选C.

  4.C 解析:因为函数图象经过点(3,-7),所以k=-21.将各选项分别代入检验可知只有C项符合.

  5.B 解析:∵ BC=BD+DC=8,BD∶DC =5∶3,∴ BD=5,DC=3.∵ ∠ =∠ ∠ADC=∠BDE,∴△ACD∽△BED,∴ 即 ∴ DE= .

  6.B 解析:当一个直角三角形的两直角边长为6,8,且另一个与它相似的直角三角形的两直角边长为3,4时 的值为5;当一个直角 三角形的一直角边长为6,斜边长为8,另一直角边长为2 且另一个与它相似的直角三角形的一直角边长为3,斜边长为4时 的值为 故 的值可以为5或 .

  7.C 解析:∵ ∠DAC=∠ ∠ACD=∠BCA,∴ △ABC∽△DAC,

  ∴ = =4,即 ∴ ∴ .

  点拨:相似三角形的面积比等于对应边的比的平方.不要错误地认为相似三角形的面积比等于对应边的比.

  8. D 解析:由题意知

  9.B 解析:根据相似图形的定义对各选项分析判断后再利用排除法进行求解.

  A.两个等腰三角形,两腰对应成比例, 夹角不一定相等,所以两个等腰三角形不一定相似,故本选项错误;B. 两个等腰直角三角形,两腰对应成比例,夹角都是直角.一定相等,所以两个等腰直角三角形一定相似,故本选项正确;C. 两个直角三角形,只有一直角相等,其余两锐角不一定对应相等,所以两个直角三角形不一定相似,故本选项错误;D. 两个锐角三角形,不具备相似的条件,所以不一定相似,故本选项错误.故选B.

  10. D 解析:设 则 又 =3,则15 =3,得 = 即 = = = 所以 = .故选D.

  11. D解析:∵ = ∴ ∴ ∴ 故选D.

  12. A 解析:∵ △ ∽△ 相似比为

  又∵ △ ∽△ 相似比为

  ∴ △ABC与△ 的相似比为 .故选A.

  13.6 解析:因为y 与 2x+1 成反比例,所以设 ,将x=1 ,y=2代入得k=6,所以 ,再将x=0代入得y=6.

  14.24 解析:由反比例函数图象的对称性知点A和点B关于原点对称,所以有 , .又因为点 在反比例函数 的图象上,所以 ,故 .

  15. 解析:由梯形的面积公式得 ,整理得 ,所以 .

  16.(-2,-1) 解析:设直线l的解析式为y=ax,因为直线l和反比例函数的图象都经过A(2,1),将A点坐标代入可得a= ,k=2,故直线l的解析式为y= x,反比例函数的解析式为 ,联立可解得B点的坐标为(-2,-1).

  17.230 解析:根据比例尺=图上距离︰实际距离,列比例式直接求得实际距离.

  设 地到 地实际距离约为 则 解得 厘米=230千米.

  ∴ 地到 地实际距离约为230千米.

  18. 解析: 先利用勾股定理求出 那么 即是相似比.

  由图可知 ∴ △ 与△ 的相似比是 .

  19.10 解析:∵ 是△ 的中位线,

  ∴ ∥ ∴ △ ∽△

  ∵ ∴ .

  ∵ △ 的面积为5,∴ .

  ∵ 将△ 沿 方向平移到△ 的位置, ∴ .

  ∴ 图中阴影部分的面积为: .

  20. 10 解析:∵ ∥ ∴ △ ∽△

  ∵ ∴ 0.

  又∵ 四边形 是平行四边形,

  ∴ .

  21.分析:(1)根据“SAS”可证△EAB≌△FAB.

  (2)①先证出△AEB≌△AFC,可得∠EBA=∠FCA.

  又∠KGB=∠AGC,从而证出△AGC∽△KGB.

  ②应分两种情况进行讨论:

  当∠EFB=90°时,有AB= AF,BF= AF,可得AB∶BF= ∶ ;

  当∠FEB=90°时,有AB= AF,BF=2AF,可得AB∶BF= ∶2.

  (1)证明:∵ AO⊥BC且AB=AC,∴ ∠OAC=∠OAB=45°.

  ∴ ∠EAB=∠EAF-∠BAF=45°,∴ ∠EAB=∠FAB.

  ∵ AE=AF,且AB=AB,∴ △EAB≌△FAB.∴ BE=BF.

  (2)①证明:∵ ∠BAC=90°,∠EAF=90°,∴ ∠EAB+∠BAF=∠BAF+∠FAC=90°,

  ∴ ∠EAB=∠FAC.∵ AE=AF,且AB=AC,∴ △AEB≌△AFC ,∴ ∠EBA=∠FCA.

  又∵ ∠KGB=∠AGC,∴ △AGC∽△KGB.5ykj.com

  ②解:∵ △AGC∽△KGB,∴ ∠GKB=∠GAC=90°.∴ ∠EBF<90°.

  Ⅰ当∠EFB=90°时,AB∶BF= ∶ .

  Ⅱ当∠FEB=90°时,AB∶BF= ∶2.

  点拨:(1)证两条线段相等一般借助三角形全等;(2)在判定两个三角形相似时,如果没有边的关系,一般需证明有两个角相等,利用“两角对应相等的两个三角形相似”判定相似;(3)图形旋转前后,对应角相等,对应线段相等.

  22.分析:(1)先把点A(1,4)的坐标代入 ,求出k的值;再把点B(m,-2)的坐标代入 中,求出m的值;最后把A,B两点的坐标分别代入 ,组成关于a,b的二元方程组,解方程组求出a,b即可.

  (2)由图象可以看出,当0

  (3)由题意,得AC=8,点B到AC的距离是点B的横坐标与点A的横坐标之差的绝对值,即等于3,所以 .

  解:(1)∵ 点A(1,4)在 的图象上,∴ k=1×4=4,故 .

  ∵ 点B在 的图象上,∴ , 故点B(-2,-2).

  又∵ 点A、B在函数 的图象上,

  ∴ 解得

  ∴ .∴ 这两个函数的表达式分别为: , .

  (2)由图象可知,当 时,自变量x的取值范围为0

  (3)∵ 点C与点A关于x轴对称,∴ 点C(1,-4).

  如图,过点B作BD⊥AC,垂足为D,则D(1,-2),

  于是△ABC的高BD=|1-(-2)|=3,AC=|4-(-4)|=8.

  23.解:(1)因为A(2,m),所以 , .

  所以 ,

  所以 .所以点A的坐标为 .

  把A 代入 ,得 = ,所以k=1.

  (2)因为当 时, ;当 时, ,

  又反比例函数 在 时, 随 的增大而减小,

  所以当 时, 的取值范围为(3)如图,当直线过点(0,0)和(1,1)时线段PQ的长度最小,为2 .

  24. 解:(1)∵ 反比例函数 的 图象经过点A(2,3),

  把点A的坐标(2,3)代入解析式,得 ,解得k=6,

  ∴ 这个函数的解析式为 .

  (2)分别把点B,C的坐标代入 ,

  可知点B的坐标不满足函数解析式,点C的坐标满足函数解析式,

  ∴ 点B不在这个函数的图象上,点C在这个函数的图象上.

  (3)∵ 当x=-3时,y=-2,当x=-1时,y=-6,

  又由k>0知,当x<0时,y随x的增大而减小,

  ∴ 当-3

  25.解:∵ 实际距离=图上距离÷比例尺,

  ∴ 、 两地之间的实际距离

  这个地区的实际边界长

  26. 证明:(1)∵ ∴ ∠ .

  ∵ ∥ ∴ .

  ∴ .

  ∵ ∴ △ ∽△ .

  ( 2)由△ ∽△ 得 .

  ∴ .

  由△ ∽△ 得 .

  ∵∠ ∠ ∴ △ ∽△ .

  27. 解:(1)当 时,为函数,

  设函数关系式为 ,由于函数图象过点(0,15),(5,60),

  所以 解得 所以 .

  当 时,为反比例函数,设函数关系式为 ,由于图象过点(5,60),

  所以 =300.

  综上可知y 与x的函数关系式为

  (2)当 时, ,所以从开始加热到停止操作,共经历了20分钟.

  中考数学复习专题训练三

  一、选择题(本部分共30分。每小题3分,共10小题,合计 )

  1、方程x -4=0的解是( )

  A、4 B 、±2 C、2 D、-2

  2、下列图案中,既是轴对称图形又是中心对称图形的是( )

  3、一元二次方程 的根的情况为( )

  A.有两个相等的实数根 B.有两个不相等的实数根

  C.只有一个实数根 D.没有实数根

  4、如图,△ABC中,AB=AC=8,BC=6,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为( )

  A、10 B、11 C、12 D、13

  5、为了改善居民住房条件,某市计划用未来两年的时间,将城镇居民的住房面积由现在的人均约为 提高到 若每年的年增长率相同,则年增长率为( )

  A、    B、    C、 D、 ﹪

  6、平面直角坐标系内一点p(-2,3)关于原点对称点的坐标是( )

  A、(3,-2) B 、(2,3) C、(-2,-3) D、(2,-3)

  7、下图是一个五环图案,它由五个圆组成,下排的两个圆的位置关系是( )

  A、相交 B 、相切 C、内含 D、外离

  8、如图,DC 是⊙O的直径,弦AB⊥CD于F,连结BC,DB,

  则下列结论错误的是(   )

  A.AD=BD B.AF=BF C.OF=CF D.∠DBC=90°

  9、某正方形园地是由边长为1的四个小正方形组成的,现要在园地上建一个花坛(阴影部分)使花坛面积是园地面积的一半,以下图中设计不合要求的是( ).

  10、如果一个三角形的其中两边长分别是方程 的两个根,那么连结这个三角形三边的中点,得到的三角形的周长可能是(   )

  A.5.5 B.5 C.4.5 D.4

  二、填空题(本部分共24分。每小题4分,共6小题,合计 )

  11、一元二次方程x2=3x的解是: .

  12、蔬菜基地建圆弧形蔬菜大棚的剖面如右图所示,已知AB=16m,半径 OA=10m,高度CD为 m.

  13、如图,AB、AC与⊙O相切于点B、C,∠A=50゜,P为⊙O上异于B、C的一个动点,则∠BPC的度数为 .

  14、如图,在Rt△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°

  得到△OA1B1,则∠A1OB= .

  15已知方程x -3x+k=0有两个相等的实数根,则k= .

  16、如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,

  圆心角为60°,则图中阴影部分的面积是 .

  三、解答题(一)(本部分共18分。每小题6分,共3小题,合计 )

  17、解下列一元二次方程.

  (1)x2﹣5x+1=0; (2)3(x﹣2)2=x(x﹣2).

  18、已知关于 的一元二次方程 .

  (1)当m=3时,判断方程的根的情况; (2)当m=-3时,求方程的根.

  19、如图,在⊙O中,CD为直径,AB为弦,且CD平分AB于E,OE=3cm,AB=8cm

  求:⊙O的半径.

  四、解答题(二)(本部分共21分。每小题7分,共3小题,合计 )

  20、如图,在 正方形网格中,每个小正方形的边长均为1个单位.将 向下平移4个单位,得到 ,再把 绕点 顺时针旋转 ,得到 ,

  请你画出 和 (不要求写画法).

  21、如图AB是⊙o 的直径,C是⊙o 上的一点,若AC=8㎝,AB=10㎝,OD⊥BC于点D,求BD的长?

  22、现有一块长20cm,宽10cm的长方形铁皮,在它的四个角分别剪去一个大小完全相同的小正方形,用剩余的部分做成一个底面积为56cm2的无盖长方体盒子,请求出剪去的小正方形的边长.

  五、解答题(三)(本部分共27分。每小题9分,共3小题,合计 )

  23、学校要把校园内一块长20米,宽12米的长方形空地进行绿化,计划中间种花,四周留出宽度相同的地种草坪,且花坛面积为180平方米,求草坪的宽度。

  24、△ABC的内切圆⊙o与BC,CA,AB分别相切于点D、E、F,且AB=9cm,BC=14cm,CA=13cm,求AF、BD、CE的长?

  25、如图,AB是⊙O的直径,∠BAC=45°,AB=BC.

  (1)、求证:BC是⊙O的切线;

  (2)、设阴影部分的面积为a,b, ⊙O的面积为S,请写出S与a,b的关系式。

猜你喜欢:

1.初三数学中考复习计划有哪些

2.苏教版历史初中会考复习资料

3.苏教版小学英语总复习练习题及答案

4.苏教版初一上册语文专题复习题试题及答案

5.小学五年级上学期苏教版数学练习题

3770819