学习啦>学习方法>通用学习方法>复习方法>

人教版小学五年级数学下册复习资料(2)

欣怡分享

  21. 长方体有8个顶点。

  22. 相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高

  23. 正方体有6个面, 6个面都是正方形 ,6个面完全相等,正方体有12条棱, 12条棱长度都相等,正方体有8个顶点

  24. 长方体棱长之和:(长+宽+高)×4 长×4+宽×4+高×4

  25. 正方体棱长之和:棱长×12

  26. 长方体(正方体)6个面的总面积,叫做它的表面积。

  27. 长方体表面积=(长×宽+宽×高+长×高)×2 或长方体表面积=长×宽×2+宽×高×2+长×高×2

  28. 正方体表面积=棱长×棱长×6

  29. 计量体积要用体积单位,常用的体积单位有立方厘米,立方分米,立方米,可以分别写成cm3 dm3 m3

  30. 棱长是1cm的正方体,体积是1 cm3,棱长是1cm的正方体,体积是1 dm3,棱长是1cm的正方体,体积是1 m3

  31. 长方体所含体积单位的数量就是长方体的体积。长方体的体积=长×宽×高,v=abh;正方体体积=棱长×棱长×棱长,v=a3 =a×a×a a3表示3个a相乘

  32. 相邻两个体积单位间的进率是1000,相邻两个面积单位间的进率是1000,相邻两个长度单位间的进率是10,1立方米=1000立方分米,1立方分米=1立方厘米,1升=1000毫升,1立方米=1000000立方厘米,计量容积一般用体积单位,计量液体的体积,用升和毫升

  33. 一个物体、一些物体等都可以看作一个整体,一个整体可以用自然数1来表示,通常把它叫做单位“1”。

  34. 把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。例如:表示把单位“1”平均分成7份,表示这样的3份。其中表示一份的数叫做分数单位。

  35. 米表示

  (1) 把5米看作单位“1”,把单位“1”平均分成8份,表示这样的1份,就是米,算式:5÷8=(米)

  (2) 把1米看作单位“1”,把单位“1”平均分成8份,表示这样的5份,就是米,算式:1÷8=(米),5个米就是米

  36. 当整数除法得不到整数的商时,可以用分数表示除法的商。在用分数表示整数除法的商时,分数的分子相当于除法的被除数,分数的分母相当于除法的除数,除号相当于分数中的分数线。(除数不能为0)区别:分数是一种数,除法是一种运算

  37. 分子比分母小的分数叫真分数,真分数小于1。分子比分母大或分子和分母相等的分数叫做假分数,假分数大于或等于1。

  38. 带分数包括整数部分和分数部分。假分数化成带分数,用分子除以分母所得的商作为带分数的整数部分,余数作为分子,分母不变。带分数化成假分数时,用整数部分和分母相乘再加分子所得结果作分子,分母不变。

  39. A是B的几分之几?用A÷B

  40. 分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。这叫做分数的基本性质。

  41. 几个数公有的因数,叫做这几个数的公因数。其中最大的一个叫做这几个数的最大公因数。通常把每个数分解质因数,把它们所有的公有质因数相乘,来求最大公因数。

  42. 如果两个数的公因数只有1,这两个数是互质数。两个连续自然数;两个质数;1和其他自然数一定是互质数。

  43. 分子和分母只有公因数1的分数叫做最简分数。把一个分数化成和它相等,但分子分母比较小的分数,叫做约分。

  44. 几个数公有的倍数,叫做这几个数的公倍数。其中最小的一个叫做这几个数的最小公倍数。通常把每个数分解质因数,把它们所有的公有质因数和独有质因数相乘,来求最小公倍数。

  45. 把异分母分数分别化成和原来分数相等的同分母分数(公分母),叫做通分。

  46. 求三个数的最大公因数和最小公倍数时,可以先求其中两个数的最大公因数和最小公倍数,用求出的最大公因数和最小公倍数再与第三个数求最大公因数和最小公倍数。

  47. 如果两个数是倍数关系,那么两个数的最大公因数是较小数,最小公倍数是较大数。

  48. 如果两个数公因数只有1,那么这两个数的最大公因数是1,最小公倍数是它们的乘积。

  49. 两个数公因数只有1的几种特殊情况:1和其他自然数,相邻两个自然数,两个质数。

  50. 分数化成小数:用分子除以分母化成小数。小数化成分数:把小数写成分母是10,100,1000……的分数,然后再化成最简分数。

  小学五年级数学下册复习资料三

  第一部分 图形与几何

  一、观察物体

  1、从不同的位置(或同一位置)观察物体,看到的形状可能相同也可能不同;从同一位置观察长方体或正方体时不能看到所有的面,最多只能看到三个面,最少看到一个面。

  2、正面、侧面(左面,右面)、后面都是相对的,它是随着观察角度的变化而变化。通过观察、想象、猜测,培养空间想象力和思维能力,能正确辨认从正面、侧面、上面观察到的简单物体的形状。

  3、观察物体,从实物观察到对立体图形的观察有一个体验、认识、提高的过程,多观察物体,多画观察到的图形,自己制作立体图形,有意识的训练想象能力,逐渐就会观察立体图形了。

  4、观察物体,先要确定观察的位置(方向)(常选择上面、正面、左侧面、右侧面),再确定观察的形状,并把它画下来,在平面图形画上斜线。

  5、根据各个位置看到的平面图形推算共有几个小正方体方法:从正面看数层数,从下往上数;从上面看数列数,从左往右数;从左面看数排数,前排在右后排在左,从右往左数。

  6、至少用8个正方体可拼成较大的正方体,27个64个125个。。。都可拼成较大正方体。

  二、图形的运动

  图形变换的基本方式是对称、平移和旋转。

  对称点是关于一直线对称对应点是一图形经变换后的图形位置相同的点1、平移不改变图形的大小和形状。

  2、平移的三要素:原图形的位置、平移的方向、平移的距离。平移的方向一般为:水平方向、垂直方向两种。平移的距离:一般为几个单位长度(也即几个方格)

  3、平移是整个图形的移动,图形的每个关键点都需要按要求移动。

  4、把图形平移的步骤:

  (1)确定原图形位置、平移的方向、平移的距离。

  (2)找出原图形的各关键点。

  (3)根据题目要求将各个点依次平移。

  (4)顺次连接平移后的各点,标明各点名称。

  (二)轴对称: 如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。

  (1)学过的轴对称平面图形有:圆形、长方形、正方形、圆形、等腰三角形、等边三角形、等腰梯形……

  等腰三角形有1条对称轴,等边三角形有3条对称轴,长方形有2条对称轴,正方形有4条对称轴,等腰梯形有1条对称轴,圆有无数条对称轴。任意梯形和平行四边形不是轴对称图形。

  (2)对称点到对称轴的距离相等。

  (3)轴对称图形的特征和性质:①对称点到对称轴的距离相等;②对称点的连线与对称轴垂直;③对称轴两边的图形大小、形状完全相同,方向相反。

  (4)对称图形包括轴对称图形和中心对称图形。平行四边形(除棱形)属于中心对称图形。

  2、旋转:物体或图形围绕一个定点沿着一个方向转动一定的角度的现象叫做旋转。如风扇的叶片旋转。定点O叫做旋转中心,旋转的角度叫做旋转角,原图形上的一点旋转后成为的另一点成为对应点。

  (1)生活中的旋转:电风扇、车轮、纸风车

  (2)旋转三要素:①旋转中心,固定不变;②旋转方向有顺时针、逆时针;③旋转角度有:常见的有30°、45°、60°90°、180°、270°。

  (3)长方形绕中心点旋转180度与原来重合,正方形绕中心点旋转90度与原来重合。等边三角形绕中点旋转120度与原来重合。

  (4)旋转的性质:

  ①图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动;②其中对应点到旋转中心的距离相等;旋转前后图形的大小和形状没有改变,位置和方向发生改变,旋转中心是唯一不动的点,③两组对应点分别与旋转中心的连线所成的角度相等,都等于旋转角;

  (5)怎样画图形旋转的形状:(1)先观察原图形的形状特征找准关键点,(2)找准旋转中心、旋转方向、旋转角度 ;

  (3)使用直角三角板的顶点与旋转中心重合,则该图形旋转后的形状就在三角板另一条边上;

  (4)确定各对应点的长度,用虚线标出来;(5)将每个对应点连接并标出名称。

  三 、 长方体和正方体

  1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。两个面相交的边叫做棱。三条棱相交的点叫做顶点。相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。(长宽高是相对而言的,随观察角度而定)

  长方体特点:

  (1)长方体有6个面,8个顶点,12条棱,相对的面完全相同,相对的面面积相等,相对的棱长度相等。

  (2)一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。

  2、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。

  正方体特点:(1)正方体有12条棱,它们的长度都相等。(2)正方体有6个面,每个面都是正方形,每个面的面积都相等。

猜你喜欢:

1.小学五年级数学下册单元测试卷

2.人教版五年级上册数学复习资料

3.小学5年级数学下册期末试卷

4.五年级上册数学期末复习资料

5.数学书五年级下册总复习试题卷

3746798