学习啦>知识大全>方法百科>读书技巧>

数学速算的方法

虹静分享

  数学的速算方法是什么?乘法的速算方法有哪些?今天,学习啦小编为你带来了数学速算的方法。

  数学速算的方法是什么

  (1)乘数是5的速算法。遇到一个数乘以5的时候,可以先乘以10,然后再除以2,就是所求的结果。也就是“先用10乘再折半”。

  例1 计算736×5=?

  解:736×5=736×10÷2

  =7360÷2

  =3680

  例2 计算945×5=?

  解:945×5=945×10÷2

  =9450÷2

  =4725

  (2)两位数乘以99的速算法。一个两位数乘以99的时候,可以用这个数乘以100,再从积里减去这个两位数的1倍。

  一个数乘以100,只要在这个数的末尾添上两个0,就可以了。

  例1 计算 86×99=?

  解:86×99=86×100-86

  =8600-86

  =8514

  例2 计算 95×99

  解:95×99=95×100-95

  =9500-95

  =9405

  两位数乘以99的速算法还可以用一句口诀求出结果。这句口诀是:“去1添补”。去1,就是从原来的两位数里减去1,作为所求结果的千位和百位上的数;添补,就是求出所求原来两位数对于100的补数,作为所求结果的十位和个位上的数。

  例3 计算78×99=?

  解:

  例4 计算54×99=?

  解:

  (3)几拾一乘以几拾一的速算法。几拾一和几拾一相乘的时候,可以先求出两个十位数字的积,写在积的百位与千位上;再把两个十位数字的和写在积的十位上,满10要向百位进1;最后在积的个位上写1。

  例1 计算 51×41=?

  解:51×41=(5×4)×100+(5+4)×10+1

  =2000+90+1

  =2091

  用竖式表示:

  可以看出,积的个位数字是1;积的十位数字是5+4=9;积的百位和千位数字是5×4=20。

  例2 计算71×91=?

  解:71×91=(7×9)×100+(7+9)×10+1

  =6300+160+1

  =6461

  用竖式表示:

  可以看出,积的个位数字是1;积的十位数字是7+9=16,在积的十位上写6,向百位进1;积的百位和千位数字是7×9=63,加上进位的1,是64。

  (4)十位数相同,个位数之和等于10的两位数乘法的速算法。遇到这种情况的两个两位数相乘的时候,先用比十位数字大1的数跟十位数字相乘,得出来的数是多少个“百”,写在积的百位和千位上;然后把两个个位数相乘,得出来的数是多少个“一”,写在积的个位和十位上。这就是所求的结果。

  例1计算24×26=?

  解:24×26=(2×3)×100+(4×6)

  =600+24

  =624

  即:

  对于这个规律证明如下:

  设a、b、c为1~9的自然数,并且两个两位数为(10a+b)和(10a+c),而b+c=10。

  则:(10a+b)(10a+c)=100a2+10ab+10ac+bc

  =100a2+10a(b+c)+bc

  =100a2+100a+bc(∵b+c=10)

  =100a(a+1)+bc

  =a(a+1)·100+bc

  即(10a+b)(10a+c)=a(a+1)·100+bc.

  例2 计算67×63=?

  解:67×63=(6×7)×100+(7×3)

  =4200+21

  =4221

  即:

  (5)个位数相同,而十位上的数字之和是10的两个两位数乘法的速算法。遇到这种情况的两个两位数相乘的时候,先将两个十位数字相乘,再加上一个数的个位数,所得出的数表示多少个“百”,写在积的百位和千位;再将个位数平方,得出来的数是多少个“一”,写在积的个位和十位。这就是所求的结果。

  例1 计算 76×36=?

  解:76×36=(7×3+6)×100+62

  =2700+36

  =2736

  即:

  对于这个规律证明如下:

  设a、b、c为1~9的自然数,并且两个两位数为(10a+c)和(10b+c),而a+b=10。

  则:(10a+c)(10b+c)=100ab+10bc+10ac+c2

  =100ab+10c(a+b)+c2

  =100ab+100c+c2(∵a+b=10)

  =(ab+c)· 100+c2

  即:(10a+c)(10b+c)=(ab+c)·100+c2

  例2 计算 47×67=?

  解:47×67=(4×6+7)×100+72

  =3100+49

  =3149

  小学数学速算与巧算方法例解

  1.什么叫“补数”?

  两个数相加,若能恰好凑成整十、整百、整千、整万„,就把其中的一个数叫做另一个数的“补数”。

  如:1+9=10,3+7=10, 2+8=10,4+6=10, 5+5=10。

  又如:11+89=100,33+67=100,

  22+78=100,44+56=100, 55+45=100,

  在上面算式中,1叫9的“补数”;89叫11的“补数”,11也叫89的“补数”.也就是说两个数互为“补数”。

  对于一个较大的数,如何能很快地算出它的“补数”来呢?一般来说,可以这样“凑”数:从最高位凑起,使各位数字相加得9,到最后个位数字相加得10。 如: 87655→12345, 46802→53198, 87362→12638,„

  下面讲利用“补数”巧算加法,通常称为“凑整法”。

  2.互补数先加。

  例1 巧算下面各题:

  ①36+87+64②99+136+101 ③ 1361+972+639+28

  解:①式=(36+64)+87 =100+87=187

  ②式=(99+101)+136 =200+136=336

  ③式=(1361+639)+(972+28) =2000+1000=3000

  3.拆出补数来先加。

  例2 ①188+873 ②548+996 ③9898+203

  解:①式=(188+12)+(873-12)(熟练之后,此步可略) =200+861=1061

  ②式=(548-4)+(996+4) =544+1000=1544

  ③式=(9898+102)+(203-102) =10000+101=10101

  4.竖式运算中互补数先加。
猜您感兴趣:

1.小学数学加减法速算技巧

2.高中数学速算技巧

3.小学数学口算方法

4.一年级巧算与速算的重难点

5.速算口诀小升初数学知识

6.一年级数学速算题试卷

7.小学数学计算能力的培养方法

8.小学数学口算天天练

    2698927