学习啦>知识大全>知识百科>百科知识>

电商数据分析基础知识

谢君分享

  电商数据分析的基础指标体系,涵盖了流量、销售转化率、客户价值、商品类目、营销活动、风控和市场竞争指标,这些指标都需要系统化的进行统计和监控。以下是由学习啦小编整理关于电商数据分析基础知识的内容,希望大家喜欢!

  电商数据分析基础知识

  信息流、物流和资金流三大平台是电子商务的三个最为重要的平台。而电子商务信息系统最核心的能力是大数据能力,包括大数据处理、数据分析和数据挖掘能力。无论是电商平台(如淘宝)还是在电商平台上销售产品的卖家,都需要掌握大数据分析的能力。越成熟的电商平台,越需要以通过大数据能力驱动电子商务运营的精细化,更好的提升运营效果,提升业绩。构建系统的电子商务数据分析指标体系是数据电商精细化运营的重要前提,本文将重点介绍电商数据分析指标体系。

  电商数据分析指标体系分为八大类指标,包括总体运营指标、网站流量累指标、销售转化指标、客户价值指标、商品及供应链指标、营销活动指标、风险控制指标和市场竞争指标。不同类别指标对应电商运营的不同环节,如网站流量指标对应的是网站运营环节,销售转化、客户价值和营销活动指标对应的是电商销售环节。

  1、电商总体运营指标

  电商总体运营整体指标主要面向的人群电商运营的高层,通过总体运营指标评估电商运营的整体效果。电商总体运营整体指标包括四方面的指标:

  (1)流量类指标

  独立访客数(UV),指访问电商网站的不重复用户数。对于PC网站,统计系统会在每个访问网站的用户浏览器上“种”一个cookie来标记这个用户,这样每当被标记cookie的用户访问网站时,统计系统都会识别到此用户。在一定统计周期内如(一天)统计系统会利用消重技术,对同一cookie在一天内多次访问网站的用户仅记录为一个用户。而在移动终端区分独立用户的方式则是按独立设备计算独立用户。

  页面访问数(PV),即页面浏览量,用户每一次对电商网站或着移动电商应用中的每个网页访问均被记录一次,用户对同一页面的多次访问,访问量累计。

  人均页面访问数,即页面访问数(PV)/独立访客数,该指标反映的是网站访问粘性。

  (2)订单产生效率指标

  总订单数量,即访客完成网上下单的订单数之和。

  访问到下单的转化率,即电商网站下单的次数与访问该网站的次数之比。

  (3)总体销售业绩指标

  网站成交额(GMV),电商成交金额,即只要网民下单,生成订单号,便可以计算在GMV里面。

  销售金额。销售金额是货品出售的金额总额。

  注:无论这个订单最终是否成交,有些订单下单未付款或取消,都算GMV,销售金额一般只指实际成交金额,所以,GMV的数字一般比销售金额大。

  客单价,即订单金额与订单数量的比值。

  (4)整体指标

  销售毛利,是销售收入与成本的差值。销售毛利中只扣除了商品原始成本,不扣除没有计入成本的期间费用(管理费用、财务费用、营业费用)。

  毛利率,是衡量电商企业盈利能力的指标,是销售毛利与销售收入的比值。如京东的2014年毛利率连续四个季度稳步上升,从第一季度的10.0%上升至第四季度的12.7%,体现出京东盈利能力的提升。

  2、网站流量指标

  (1)流量规模类指标

  常用的流量规模类指标包括独立访客数和页面访问数,相应的指标定义在前文(电商总体运营指标)已经描述,在此不在赘述。

  (2)流量成本累指标

  单位访客获取成本。该指标指在流量推广中,广告活动产生的投放费用与广告活动带来的独立访客数的比值。单位访客成本最好与平均每个访客带来的收入以及这些访客带来的转化率进行关联分析。若单位访客成本上升,但访客转化率和单位访客收入不变或下降,则很可能流量推广出现问题,尤其要关注渠道推广的作弊问题。

  (3)流量质量类指标

  跳出率(Bounce Rate)也被称为蹦失率,为浏览单页即退出的次数/该页访问次数,跳出率只能衡量该页做为着陆页面(LandingPage)的访问。如果花钱做推广,着落页的跳出率高,很可能是因为推广渠道选择出现失误,推广渠道目标人群和和被推广网站到目标人群不够匹配,导致大部分访客来了访问一次就离开。

  页面访问时长。页访问时长是指单个页面被访问的时间。并不是页面访问时长越长越好,要视情况而定。对于电商网站,页面访问时间要结合转化率来看,如果页面访问时间长,但转化率低,则页面体验出现问题的可能性很大。

  人均页面浏览量。人均页面浏览量是指在统计周期内,平均每个访客所浏览的页面量。人均页面浏览量反应的是网站的粘性。

  (4)会员类指标

  注册会员数。指一定统计周期内的注册会员数量。

  活跃会员数。活跃会员数,指在一定时期内有消费或登录行为的会员总数。

  活跃会员率。即活跃会员占注册会员总数的比重。

  会员复购率。指在统计周期内产生二次及二次以上购买的会员占购买会员的总数。

  会员平均购买次数。指在统计周期内每个会员平均购买的次数,即订单总数/购买用户总数。会员复购率高的电商网站平均购买次数也高。

  会员回购率。指上一期末活跃会员在下一期时间内有购买行为的会员比率。

  会员留存率。会员在某段时间内开始访问你的网站,经过一段时间后,仍然会继续访问你的网站就被认作是留存,这部分会员占当时新增会员的比例就是新会员留存率,这种留存的计算方法是按照活跃来计算,另外一种计算留存的方法是按消费来计算,即某段的新增消费用户在往后一段时间时间周期(时间周期可以是日、周、月、季度和半年度)还继续消费的会员比率。留存率一般看新会员留存率,当然也可以看活跃会员留存。留存率反应的是电商留住会员的能力。

  3、网站销售(转化率)类指标

  (1)购物车类指标

  基础类指标,包括一定统计周期内加入购物车次数、加入购物车买家数、加入购物车买家数以及加入购物车商品数。

  转化类指标,主要是购物车支付转化率,即一定周期内加入购物车商品支付买家数与加入购物车购买家数的比值。

  (2)下单类指标

  基础类指标,包括一定统计周期内的下单笔数、下单金额以及下单买家数。

  转化类指标,主要是浏览下单转化率,即下单买家数与网站访客数(UV)的比值。

  (3)支付类指标

  基础统计类指标,包括一定统计周期内支付金额、支付买家数和支付商品数。

  转化类指标。包括浏览-支付买家转化率(支付买家数/网站访客数)、下单-支付金额转化率(支付金额/下单金额)、下单-支付买家数转化率(支付买家数/下单买家数)和下单-支付时长(下单时间到支付时间的差值)。

  4、客户价值类指标

  客户指标。常见客户指标包括一定统计周期内的累计购买客户数和客单价。客单价是指每一个客户平均购买商品的金额,也即是平均交易金额,即成交金额与成交用户数的比值。

  新客户指标。常见新客户指标包括一定统计周期内的新客户数量、新客户获取成本和新客户客单价。其中,新客户客单价是指第一次在店铺中产生消费行为的客户所产生交易额与新客户数量的比值。影响新客户客单价的因素除了与推广渠道的质量有关系,还与电商店铺活动以及关联销售有关。

  老客户指标。常见老客户指标包括消费频率、最近一次购买时间、消费金额和重复购买率。消费频率是指客户在一定期间内所购买的次数;最近一次购买时间表示客户最近一次购买的时间离现在有多远;客户消费金额指客户在最近一段时间内购买的金额。消费频率越高,最近一次购买时间离现在越近,消费金额越高的客户越有价值。重复购买率则指消费者对该品牌产品或者服务的重复购买次数,重复购买率越多,则反应出消费者对品牌的忠诚度就越高,反之则越低。重复购买率可以按两种口径来统计:第一种,从客户数角度,重复购买率指在一定周期内下单次数在两次及两次以上的人数与总下单人数之比,如在一个月内,有100个客户成交,其中有20个是购买两次及以上,则重复购买率为20%;第二种,按交易计算,即重复购买交易次数与总交易次数的比值,如某月内,一共产生了100笔交易,其中有20个人有了二次购买,这20人中的10个人又有了三次购买,则重复购买次数为30次,重复购买率为30%。

  5、商品类指标

  产品总数指标。包括SKU、SPU和在线SPU。SKU是物理上不可分割的最小存货单位。SPU即Standard Product Unit (标准化产品单元),SPU是商品信息聚合的最小单位,是一组可复用、易检索的标准化信息的集合,该集合描述了一个产品的特性。通俗点讲,属性值、特性相同的商品就可以称为一个SPU。如iphone5S是一个SPU,而iPhone 5S配置为16G版、4G手机、颜色为金色、网络类型为TD-LTE/TD-SCDMA/WCDMA/GSM则是一个SKU。在线SPU则是在线商品的SPU数。

  产品优势性指标。主要是独家产品的收入占比,即独家销售的产品收入占总销售收入的比例。

  品牌存量指标。包括品牌数和在线品牌数指标。品牌数指商品的品牌总数量。在线品牌数则指在线商品的品牌总数量。

  上架。包括上架商品SKU数、上架商品SPU数、上架在线SPU数、上架商品数和上架在线商品数。

  首发。包括首次上架商品数和首次上架在线商品数。

  6、市场营销活动指标

  市场营销活动指标。包括新增访问人数、新增注册人数、总访问次数、订单数量、下单转化率以及ROI。其中,下单转化率是指活动期间,某活动所带来的下单的次数与访问该活动的次数之比。投资回报率(ROI)是指,某一活动期间,产生的交易金额与活动投放成本金额的比值。

  广告投放指标。包括新增访问人数、新增注册人数、总访问次数、订单数量、UV订单转化率、广告投资回报率。其中,下单转化率是指某广告所带来的下单的次数与访问该活动的次数之比。投资回报率(ROI)是指,某广告产生的交易金额与广告投放成本金额的比值。

  7、风控类指标

  买家评价指标。包括买家评价数,买家评价卖家数、买家评价上传图片数、买家评价率、买家好评率以及卖家差评率。其中,买家评价率是指某段时间参与评价的卖家与该时间段买家数量的比值,是反映用户对评价的参与度,电商网站目前都在积极引导用户评价,以作为其他买家购物时候的参考。买家好评率指某段时间内好评的买家数量与该时间段买家数量的比值。同样,买家差评率指某段时间内差评的买家数量与该时间段买家数量的比值。尤其是买家差评率,是非常值得关注的指标,需要监控起来,一旦发现买家差评率在加速上升,一定要提高警惕,分析引起差评率上升的原因,及时改进。

  买家投诉类指标。包括发起投诉(或申诉),撤销投诉(或申诉),投诉率(买家投诉人数占买家数量的比例)等。投诉量和投诉率都需要及时监控,以发现问题,及时优化。

  8、市场竞争类指标

  市场份额相关指标,包括市场占有率、市场扩大率和用户份额。市场占有率指电商网站交易额占同期所有同类型电商网站整体交易额的比重;市场扩大率指购物网站占有率较上一个统计周期增长的百分比;用户份额指购物网站独立访问用户数占同期所有B2C购物网站合计独立访问用户数的比例。

  网站排名,包括交易额排名和流量排名。交易额排名指电商网站交易额在所有同类电商网站中的排名;流量排名指电商网站独立访客数量在所有同类电商网站中的排名。

  电商数据分析的基础指标体系,涵盖了流量、销售转化率、客户价值、商品类目、营销活动、风控和市场竞争指标,这些指标都需要系统化的进行统计和监控,才能更好的发现电商运营健康度的问题,以更好及时改进和优化,提升电商收入。如销售转化率,其本质上是一个漏斗模型,如从网站首页到最终购买各个阶段的转化率的监控和分析是网站运营健康度很重要的分析方向。

  电子商务数据分析的七个重要因素

  1、电子商务数据分析需要商业敏感

  今天电子商务公司的数据分析师,有些像老板的军师,必须有从枯燥的数据中解开市场密码的本事。比如,具有商业意识的数据分析师发现,网站上的婴儿车的销售增加了,那么,他基本可以预测奶粉的销量也会跟上去。再比如,网站上的产品发挥的作用并不一样,有的产品是为了赚钱,有的产品是为了促销,有的产品是 为了吸引流量,不同的产品在网站上摆放的位置是不一样的。

  一个商业敏感的数据分析师,是懂得用什么样的数据实现公司的目标。比如,乐酷天与淘宝竞争,它们重点看的不是交易量,而是流量:每天有多少新的卖家进来,卖了多少东西。因为此阶段竞争最核心的就是人气,而非实质交易量。如果新来的卖家进来卖不出东西,只有老卖家的交易量在增长,即使最后每天的交易量都 增长,也还是有问题。

  再比如,一家刚踏入市场的B2B公司和已经占领大部分市场的B2B公司,它们的目标不一样。前者是看流量赚人气,后者对流量不怎么看重,而是看重交易转化率及回头率。

  当下的数据分析师多是学统计学出身的,一堆数据放在那里,大家都擅长怎么算回归、怎么画函数。但是这批学数学的人才缺乏商业意识,不知道这些数据对业务意味着什么,看不见一堆数据中彼此的关系,也就不知道该用什么样的逻辑分析,也就无法充当老板的眼睛了。

  2、电商网站转化率是关键,ROI是最终的目标

  电子商务B2B网站平台的宗旨就是为企业服务,让买家与卖家的市场销售成本降低,降低交易成本,提高订单利润。因此,电子商务的网站转化率是关键,这其中就提到一个指标的重要性——ROI。ROI是Return On Investment的简写,是指通过投资而应返回的价值,它涵盖了企业的获利目标。利润和投入的经营所必备的财产相关,因为管理人员必须通过投资和现有财产获得利润。又称会计收益率、投资利润率。

  其计算公式为:投资回报率(ROI)=年利润或年均利润/投资总额×100%

  投资回报率(ROI)的优点是计算简单;缺点是没有考虑资金时间价值因素,不能正确反映建设期长短及投资方式不同和回收额的有无等条件对项目的影响, 分子、分母计算口径的可比性较差,无法直接利用净现金流量信息。只有投资利润率指标大于或等于无风险投资利润率的投资项目才具有财务可行性。

  投资回报率(ROI)往往具有时效性–回报通常是基于某些特定年份。

  3、电子商务数据分析衡量指标的设定

  指标是让我们更好的从数据量化的层面来了解运营的状况,PV、UV、转化率基本是运营监督的指标;网站分析采用的指标可能有各种各样的,根据网站的目标和网站的客户的不同,可以有许多不同的指标来衡量。常用的网站分析指标有内容指标和商业指标,内容指标指的是衡量访问者的活动的指标,商业指标是 指衡量访问者活动转化为商业利润的指标。

  电子商务的数据可分为两类:前端行为数据和后端商业数据。前端行为数据指访问量、浏览量、点击流及站内搜索等反应用户行为的数据;而后端数据更侧重商业数据,比如交易量、投资回报率,以及全生命周期管理等。

  有些人关心前端行为数据,也有些人关心后端商业数据,但是没有几家网站把前端行为数据和后端商业数据连起来看。大家只单纯看某一端数据。但是看数据看得“走火入魔”的人会明白,每个数据,就像散布在黑夜里的星星,它们之间布满了关系网,只要轻轻按一下其中一个数据,就会驱动另外一个数据的变化。

  4、某些指标异常变化的原因分析

  网站的某些指标的异常变化是外界市场一些变化的客观反应,网站的数据分析人员一定要积极注意。例如PV减少(异常),那我们就要分析用户是搜索来源减少还是直接访问减少?反连接过来的减少?搜索减少就要观察用户的关键字、搜索引擎等。

  例如2011年的上半年,曾出现阿里巴巴与慧聪发生争论,而在那几天,另一个B2B网站–世界工厂网的会员注册量批量上升,每天超过千个以上的注册 量。当然这只是一部分的猜测,在两个B2B巨头不稳定之时,企业会选择第三方的平台,这是符合常理推断的。不过就此以后,世界工厂的注册量一直是稳中有升 的,难道这是会员发现一个免费“新大陆”的口碑宣传吗?事后发现,是因为世界工厂网的一个新项目–全球企业库的上线吸引了大量企业会员的青睐,注册量猛 然提升的。对于一些数据的异常增加或减少,一定要分析其产生的原因与市场时机,这对平台以后的发展及政策导向非常有借鉴意义。

  有一天,linkin(一个社区网站)忽然发现来自雷曼兄弟的来访者多了起来,但是并没有深究原因。第二天,雷曼兄弟就宣布倒 闭了。原因何在?雷曼兄弟的人到linkin找工作来了。谷歌宣布退出中国的前一个月,笔者在linkin上发现了一些平时很少见的谷歌产品经理在线,这 也是相同的道理。试想,如果linkin针对某家上市公司分析某些数据,是不是很有商业价值?

  5、利用数据分析用户的行为习惯

  再次说,得到数据来分析是在揣测用户的心理和一些习惯,最真实的是让用户告诉你,需要什么,这些可以利用投票调查及问题提交等来实现,当然利用数据整合分析也是必然的,然后做出来AT来权衡利弊来对用户体验惊醒改善,和一些基本的产品定位及活动。

  装备制造负责人认为,网站数据分析应该两个层次:第一,网站数据分析,是针对产品来说。就围绕产品如何运转,做封闭路径的分析。得出产品的点击是否顺畅、功能展现是否完美 。第二、研究客户的访问焦点,挖掘客户潜在需求。如果是以交易为导向的电子商务网站,就是要研究如何高效的促成交易,是否能出现联单!

  6、客户的购买行为分析

  当用户在电子商务网站上有了购买行为之后,就从潜在客户变成了网站的价值客户,电子商务网站一般都会将用户的交易信息,包括购买时间、购买商品、购买 数量、支付金额等信息保存在自己的数据库里面,所以对于这些用户,我们可以基于网站的运营数据对他们的交易行文进行分析,以估计每位用户的价值,及针对每位用户的扩展营销的可能性。

  客户的购买行为分析,如传统的RFM模型,会员聚类,会员的生命周期分析,活跃度分析,这些都精准的运营都是非常重要的。

  7、电子商务数据分析需注重实战经验

  以上所谈到的电子商务数据分析的几个重要因素,笔者个人感觉倒是有点套路,电子商务的数据分析更多的是实战,网站分析的本质是在了解用户的需求、行为,以开发用户体验良好的功能与服务,制定扩展营销的策略及附加功能的推广服务等等。


看过“电商数据分析基础知识“的人还看了:

1.电子商务毕业论文范本

2.电商基础知识

3.做电商需要哪些知识

4.电商基本知识

5.用excel做数据分析的方法

    922571