学习啦>知识大全>知识百科>百科知识>

航空航天知识技术(2)

谢君分享

  现在,美国国防部正在制定第三个国家级推进技术计划——“支撑经济可承受及任务能力的先进涡轮发动机技术”(ATTAM)计划,该计划的制定工作由美国空军研究实验室(AFRL)牵头,已进行了一年时间,将首次包括彻底集成动力与热管理系统的内容,最早将在2017年启动。

  五是高效率(Efficiency)。为了降低油耗或排放,航空运输领域对提升效率的要求不会减少,对发动机而言将是“没有最好,只有更好”。美国航空航天局(NASA)会继续投入资金,与工业界一起发展可使美国保持领先的X飞机。

  洛马公司在AFRL的“高能量效率的革命性布局”(RCEE)项目中发展了“混合翼身”(HWB)布局的战略运输机。按照该公司的设计,该机除采用具有很高空气动力效率的布局之外,还拟配装超高涵道比涡扇发动机,可运载美国空军当前使用C-5战略运输机才能运送的超大型货物,并且耗油率比C-17战略战术运输机可降低多达70%。

  美国洛马公司“混合翼身”(HWB)布局战略运输机想象图(上图)及该机采用空中加油配置、利用翼下吊舱实现双点伸缩套管(硬式)加油的想象图(下图)

  2016年2月,该布局4%的缩比模型在美国航空航天局兰利研究中心的国家跨声速风洞中进行了风洞试验。按计划,2016年秋季,该公司将完成有人驾驶的HWB演示验证机的研究与分析工作。RCEE项目将在2017年结束,但美国航空航天局已将HWB布局验证机与波音公司的“翼身融合体”(BWB)布局验证机视为其下一个X飞机的竞争方案

  六是材料(Materials)。先进制造技术并不仅止于3D打印。从铝到钛,再到碳纤维,新材料已经点燃了航空航天领域革命的火种。美国希望领导下一场革命,不管它是源自由纳米增强的复合材料、在原子尺度装配的新合金、生物工程学材料还是生物启发的结构。通过推进计算和建模来支撑更快的新材料认证也是关键。

  DARPA正在实施“从原子到产品”(A2P)项目,其目标是开发装配尺寸接近原子的纳米级工件的技术和工艺,装配形成至少毫米级尺寸的系统、零件或材料。DARPA认为,许多常见材料在纳米级制造时会展示出独特和很不寻常物理性能,这些原子级性能具有重要的国防应用潜能,包括量子化的电流-电压特性、极大降低熔点并具有极高的比热。现在面临的挑战是,如何在较大尺寸的产品级(一般几厘米)器件和系统上保持这种原子级材料的特性。

  A2P项目重点关注装配,其次是纳米级独特性的开发。通过A2P项目形成的系统、零件或材料将通过纳米级装配实现独特的材料性能、小型化、3D结构和异质(材料和几何形状)

  七是定向能(Directed Energy)。精确制导武器曾在冷战时期赋予美国抵消苏联数量优势的能力,并使美军能够在反恐战争中实施外科手术式的打击。但是,它们已变成了普遍事物。现在,在美国看来,其潜在对手不仅数量庞大,而且装备精良。美国需要定向能武器的精确性和近乎无限的“储弹量”,这种武器正在走出实验室,进行作战评估和早期部署。

  目前,美国的弹载高功率微波战斗部技术和战术飞机机载激光武器技术正在取得突破。以下面的两张图为例,上图为2012年10月,采用高功率微波战斗部的AGM-86C空射巡航导弹正在被装入B-52H轰炸机内埋弹舱中的“通用战略武器旋转发射装置”。下图为DARPA的“高能液体激光区域防御系统”(HELLADS)项目成果配装轰炸机和战斗机,用于拦截导弹的想象图。HELLADS发射功率为150千瓦,目标质量为758千克,功率密度达到5千克/千瓦的极高水平。该样机已从2015年夏季开始在新墨西哥州的白沙导弹试验场进行试验,但此后再未公布任何进展。

  八是可复用性(Reusability)。美国的经济和安全高度依赖用于通信、导航与授时、监视、广播、气象预报、资源监测的卫星,但建造并发射航天器仍是漫长且昂贵的过程,并且在轨的卫星也是潜在的脆弱资产。美国必须推动相关技术的发展,实现以快速响应、完全可复用性的方式日常化地进入空间。

  DARPA正在通过“实验性太空飞机”(XS-1)项目发展可重复使用助推飞行器,目标是验证可重复使用助推飞行器能够在10天内完成10次飞行,同时将一个重900磅(约400千克)的试验载荷送入轨道。DARPA还期望未来可以通过换装更大型的一次性上面级来发射3000磅左右(约1400千克左右)的轨道载荷,并将这种载荷的单次发射成本控制在500万美元(包括可重复使用助推飞行器和一次性上面级的费用)。

  九是颠覆(Disruption)。在美国人看来,人类虽不能预测未来,但可以为未来做好准备。颠覆性技术和服务是一个威胁,对于现存的行业如航空是如此,对于固定的用户们和规则制定方(如联邦航空局和国防部)也是如此。如果美国的航空航天能力要继续茁壮成长,就必须在企业和政府的官僚体系之间建立桥梁。

  国内的航空航天技术

  在8月28日举办的中国航空创新创业大会上,中航工业经济技术研究院科技情报专业特级专家、系统工程研究所总师、研究院赵群力谈到了目前航空领域几项颠覆性技术,这些技术能够给航空业带来飞跃性的进步。

  “颠覆性技术”的概念最早于1995年在《哈弗商业评论》中提出,指能够建立新技术和新市场的突变式技术。2016年国务院发布的“十三五”科技创新规划中也提到要“构造先发优势”,重视颠覆性技术的作用。赵群力表示,颠覆性技术风险高,研发周期长,但却是航空装备升级换代的决定性力量。

  一、高超音速技术

  高超音速指物体的速度超过5倍音速。高超音速飞行器采用的超音速冲压发动机被认为是继螺旋桨和喷气推进之后的“第三次动力革命”。美国、俄罗斯、法国、日本、印度等国正不断开展实验。

  2013年,美国军方最新研发的实验型高超音速飞机X-51A以5倍多音速的速度飞行了3分多钟;2014年,美国国防部先进研究项目局(DARPA)启动了“高超音速吸气式武器概念(HAWC)”和“战术助推滑翔系统(TBG)”这两个项目,将于2018年或2019年进行测试。

  高超音速技术将主要用于运输、攻击、ISR、进入空间等。预计2020年,美军可掌握高超声速导弹的技术;2030年掌握有限用途和使用次数的高超声速飞机技术;2040年掌握可多次、长时间使用高超声速飞机技术。

  二、无人机技术

  这个无人机绝不是仅仅指目前网上有出售的那些遥感小型无人机,这项技术在军事和商业领域都有很大的应用前景。

  2016年6月,美国辛辛那提大学开发的“阿尔法”(ALPHA)智能超视距空战系统通过了专家评估,并在空战模拟器环境下,击败了有着丰富经验的退役美国空军上校吉恩·李。

  三、变体飞机技术

  变体飞机,既变形飞机,指飞行器在飞行过程中可以改变形状,有效地实现外形的分布式连续式变形,以适应宽广变化的飞行环境,完成各种任务使命。

  2015年5月,美国柔性系统公司(FlexSys)的分布式柔性变形机翼技术取得重大进展,使用这种技术的变形襟翼在“湾流”III飞机上的偏转角(固定设置)达到预期的30度,并成功验证了飞行性能。

  四、高速直升机技术

  高速直升机是指保留直升机的飞行特征,且巡航速度达到400至500千米每小时的直升机,运输效率和机动性优越。目前直升机的巡航速度一般为每小时200至300千米。美国从20世纪五六十年代开始探索高速直升机,欧洲、俄罗斯也在积极推进。

  最新进展中,值得关注的有西科斯基、贝尔直升机公司以及极光公司的三个方案。

  上图第一幅显示的是西科斯基/波音的SB-1方案。该直升机最大起飞重量约为13.6吨,可在高温、高原环境下搭载4名机组成员和12名全副武装的士兵,最大飞行速度能够达到250节(463千米/时)。预计将在2016年晚些时候开始总装,2017年下半年完成首飞。

  第二大方案是贝尔直升机公司V-280方案(上图),采用倾转旋翼设计,设计速度达280节,航程800海里,可乘坐4名机组人员及14名武装人员,有效载荷为12000磅,计划2017年首飞。

  极光公司的“雷击”方案(上图),设计的持续飞行速度达到556-741千米/小时,悬停效率不低于75%;巡航状态升阻比不低于10,有用载重(燃油和有效载荷)不低于总重的40%,有效载荷不低于总重的12.5%。

  五、伪卫星技术

  伪卫星技术可以使对位置测算的精确度更高,负责实时接收GPS信号并测出伪距误差,把误差数据提供给本地用户,用户则以此更正自己测得的伪距,使计算出的位置精度更高。

  目前的方案包括英国“西风”太阳能无人机,巡航高度为7万英尺(21336米),续航时间可达3月,可携带有效载荷5公斤。据说英国国防部已经订购了两架,计划2016年首飞。

  美国的“秃鹰”太阳能无人机概念方案中,无人机能携带1000磅、5千瓦的载荷,最长可以在空中连续工作5年,但由于技术难度太大,项目已经终止。

  六、空基发射航天器技术

  1990年代,轨道科学公司就改装了洛克希德公司(现洛克希德·马丁公司)研制的三发动机宽体喷气式客机L-1011,来发射“飞马座”火箭,其近地轨道运载能力443kg,成功发射过几十次。

  2002年,DARPA启动“空中发射辅助太空进入(ALASA)”项目,目标是在24小时内将100磅卫星发射进入地球低卫星轨道,而且每次发射成本不超过100万美元。

  七、分布式电推进技术

  分布式混合电推进系统,是指通过传统燃气涡轮发动机为分布在机翼和机身的多个电机/风扇提供电力,并由电机驱动风扇提供绝大多数或全部的推力的新型推进系统。

  这项技术的最大优势是能极大地降低推进系统燃油消耗量和各种排放,并且减少噪声,对商用或军用飞机都有应用价值。欧洲、美国政府都将分布式混合电推进系统视为潜力技术,在2030年后投入使用。

  NASA的X-57分布式电推进技术验证机将在2017年首飞。空客已经开始研究基于分布式混合电推进系统的翼身融合飞机方案。

  八、机载激光武器技术

  1990年代,美国空军启动了基于氧碘激光器的ABL和ATL机载激光武器研究计划,用于战区弹道导弹助推段防御及其他战术目标防御,具有反卫星能力。2010年,由于试验未达到预期目标,以及使用维护上的诸多困难,空军停止了这项计划。尽管如此,美国在目标搜索与跟踪、激光大气传输补偿、抖动控制和高能激光束管理等方面取得了重要进展。

  九、计算材料技术

  材料对航空设备的更新与完善至关重要。计算材料技术的主要用途是,可以通过理论模型和计算,预测或设计材料结构与性能,从而大幅提高新材料的研发效率,并且可以按照特定的要求设计出满足工程需要的特种材料和超材料。

  其关键技术是材料建模技术、材料仿真技术、材料数据库。2011年,奥巴马政府曾正式决定进行材料基因组计划,目标是将新材料的研发周期缩短一半。

  美国奎斯泰克(Questek)公司已经使用计算材料技术开发新型材料。2014年,该公司开发出多种高性能结构钢且在飞机上得到应用。


看过“航空航天知识“的人还看了:

1.航空科技知识

2.航空航天知识竞赛试题

3.航空航天科技知识

4.航空航天知识问答

5.航天知识问答题

1153925